Imperial College London


Faculty of Natural SciencesDepartment of Life Sciences (Silwood Park)

Reader in Evolution and Developmental Genetics







Munro 2.15MunroSilwood Park





My research group is interested in a variety of topics related to the vertebrate craniofacial (head) development, craniofacial genetic conditions in humans and craniofacial developmental evolution. We use morphometric, molecular, cellular and genetic approaches to study the precise mechanisms of cranial skeletal cell differentiation and skull/face morphogenesis in amniotes. The species we work with range from the laboratory "model" systems, such as chicken embryos and mouse mutants, to the "non-model" species used for evolutionary developmental studies, for example, Darwin's Finches and their relatives from Caribbean Islands, as well as other birds and, more recently, reptiles, both squamates (e.g. Anolis lizards), and archosaurs, such as alligators. This combination of laboratory "model" species with "non-model" species from natural environments allows us to address important conceptual questions, such as the roles of particular developmental genetic mechanisms (e.g. modularity) in evolution of adaptive variation and significant morphological transitions at both small and large evolutionary scales.

Generally, our studies on evolutionary developmental biology (Evo-Devo) have a tripartite structure of the overall approach: 1) The first step is quantification of morphological variation using methods ranging from simply scoring the absence or presence of particular structures to 3D imaging and modeling; 2) The second component is identification of candidate genetic and developmental mechanisms using methods ranging from observations of the trait as it emerges in real time to quantitative trait locus (QTL) mapping to microarray and RNAseq screens;3) The third part is functional assays of candidate genes/pathways to reveal the more causative relationships by methods ranging from physical manipulations to tissue and embryo transgenesis with molecular vectors.

Selected Publications

Journal Articles

Abzhanov A, Kaufman TC, Abzhanov A, et al., 1999, Homeotic genes and the arthropod head: Expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects, Proceedings of the National Academy of Sciences of the United States of America, Vol:96, ISSN:0027-8424, Pages:10224-10229

Abzhanov A, Tzahor E, Lassar AB, et al., 2003, Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro, Development, Vol:130, ISSN:0950-1991, Pages:4567-4579

Abzhanov A, Protas M, Grant BR, et al., 2004, Bmp4 and morphological variation of beaks in Darwin's finches, Science, Vol:305, ISSN:0036-8075, Pages:1462-1465

Abzhanov A, Kuo WP, Hartmann C, et al., 2006, The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches, Nature, Vol:442, ISSN:0028-0836, Pages:563-567

Abzhanov A, Rodda SJ, McMahon AP, et al., 2007, Regulation of skeletogenic differentiation in cranial dermal bone, Development, Vol:134, ISSN:0950-1991, Pages:3133-3144

Campas O, Mallarino R, Herrel A, et al., 2010, Scaling and shear transformations capture beak shape variation in Darwin's finches, Proceedings of the National Academy of Sciences of the United States of America, Vol:107, ISSN:0027-8424, Pages:3356-3360

Mallarino R, Grant PR, Grant BR, et al., 2011, Two developmental modules establish 3D beak-shape variation in Darwin's finches, Proceedings of the National Academy of Sciences of the United States of America, Vol:108, ISSN:0027-8424, Pages:4057-4062

Mallarino R, Abzhanov A, Mallarino R, et al., 2012, Paths Less Traveled: Evo-Devo Approaches to Investigating Animal Morphological Evolution, Annual Review of Cell and Developmental Biology, Vol:28, ISSN:1081-0706, Pages:743-763

Bhullar B-AS, Marugan-Lobon J, Racimo F, et al., 2012, Birds have paedomorphic dinosaur skulls, Nature, Vol:487, ISSN:0028-0836, Pages:223-226

Mallarino R, Campas O, Fritz JA, et al., 2012, Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs, Proceedings of the National Academy of Sciences of the United States of America, Vol:109, ISSN:0027-8424, Pages:16222-16227


Abzhanov A, Abzhanov A, Abzhanov A, et al., 2013, von Baer's law for the ages: lost and found principles of developmental evolution, Trends in Genetics, Vol:29, ISSN:0168-9525, Pages:712-722

Bhullar B-AS, Morris ZS, Sefton EM, et al., 2015, A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history, Evolution, Vol:69, ISSN:0014-3820, Pages:1665-1677

More Publications