3pm Daniel Grieser (Oldenburg): Inverse and direct spectral problems for triangles and thin singular domains
We study the spectrum of the Laplace operator with Dirichlet boundary conditions on Euclidean triangles. I will discuss two results: The first result, joint with S. Maronna, is a new proof of the fact that a triangle is (among the set of all triangles) uniquely determined by the spectrum. The only previously known proof of this uses wave invariants. The study of these is technically difficult. Our new proof uses heat invariants and is technically simpler, and also involves a curious and interesting – and apparently new – geometric fact about triangles. The second result, joint with R. Melrose, that I will discuss is a description of the full asymptotic behavior of the eigenvalues when the triangle degenerates into a line. The techniques extend to thin domains with a singular fibre. The degeneration may happen in various ways. More precisely, there are two parameters describing the degeneration, and we give a complete asymptotic expansion in terms of both parameters. This involves a rather intricate and unexpected blow-up of the parameter space, which will be explained in the talk.
4.30pm Perla Sousi (Cambridge) Hunter, Cauchy Rabbit, and Optimal Kakeya Sets
A planar set that contains a unit segment in every direction is called a Kakeya set. These sets have been studied intensively in geometric measure theory and harmonic analysis since the work of Besicovich (1928); we find a new connection to game theory and probability. A hunter and a rabbit move on the integer points in [0,n) without seeing each other. At each step, the hunter moves to a neighboring vertex or stays in place, while the rabbit is free to jump to any node. Thus they are engaged in a zero sum game, where the payoff is the capture time. The known optimal randomized strategies for hunter and rabbit achieve expected capture time of order n log n. We show that every rabbit strategy yields a Kakeya set; the optimal rabbit strategy is based on a discretized Cauchy random walk, and it yields a Kakeya set K consisting of 4n triangles, that has minimal area among such sets (the area of K is of order 1/log(n)). Passing to the scaling limit yields a simple construction of a random Kakeya set with zero area from two Brownian motions. (Joint work with Y. Babichenko, Y. Peres, R. Peretz and P. Winkler).
Further info can be found of the London Analysis and Probability Seminar website.