Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Prieur M, Whittaker AC, Nuriel P, Jaimes-Gutierrez R, Garzanti E, Roige M, Somme TO, Schlunegger F, Castelltort Set al., 2024,

    Fingerprinting enhanced floodplain reworking during the Paleocene-Eocene Thermal Maximum in the Southern Pyrenees (Spain): Implications for channel dynamics and carbon burial

    , GEOLOGY, ISSN: 0091-7613
  • Other
    Tippett A, Gryspeerdt E, Manshausen P, Stier P, Smith TWPet al., 2024,

    Supplementary material to "Weak liquid water path response in ship tracks"

  • Journal article
    Griffiths A, Lambelet M, Crocket K, Abell R, Coles BJ, Kreissig K, Porter D, Nitsche FO, Rehkamper M, van de Flierdt Tet al., 2024,

    Neodymium isotope composition and rare earth element distribution of East Antarctic continental shelf and deep waters

    , Chemical Geology, Vol: 653, ISSN: 0009-2541

    Circumpolar Deep Water (CDW) and Antarctic Bottom Water (AABW) play key roles in the Earth's climate system. Both water masses form critical components of the Antarctic Circumpolar Current and Meridional Overturning Circulation and therefore directly influence the large-scale redistribution of heat, nutrients and carbon. Reconstruction of past CDW transport and AABW production and export has been a key target in palaeoceanography. One promising proxy to achieve this has been the neodymium (Nd) isotope composition of seawater. The biogeochemical processes controlling Nd in the ocean, however, remain underconstrained, and modern observations of Nd isotopes in the Southern Ocean are still geographically limited.To overcome this limitation, 61 seawater samples were collected for Nd isotope and rare earth element (REE) analysis at nine stations along the Wilkes Land continental margin and in the Australian-Antarctic Basin (65°S 125°E) near East Antarctica. The results show that the different water masses have the following Nd isotope characteristics: Antarctic Surface Water (AASW), εNd = −9.0 ± 1.0 (2SD; n = 22); Modified CDW (MCDW), εNd = −8.8 ± 0.8 (2SD; n = 22); AABW, εNd = −8.3 ± 0.5 (2SD; n = 17).There is no evidence of continental REE inputs to surface waters on the Wilkes Land margin. Observed zonal variability of Nd isotope composition in AASW can be attributed to seasonal competition between the poleward flow of warm AASW from the AAG and the westward export of cold surface shelf waters by the Antarctic Slope Current.In terms of deep and bottom waters, mixing of upwelled CDW with AASW and AABW exclusively controls the Nd isotope composition of MCDW, with no indication of boundary processes modifying the Nd isotope composition of MCDW as it encroaches the shelf or slope. The regional Nd isotope signature for AABW is intermediate between published data for the Atlantic sector AABW (εNd

  • Journal article
    Han W, Zhang J, Xu Z, Yang T, Huang J, Beevers S, Kelly F, Li Get al., 2024,

    Could the association between ozone and arterial stiffness be modified by fish oil supplementation?

    , Environmental Research, Vol: 249, ISSN: 0013-9351

    BACKGROUND: Arterial stiffness (AS) is an important predicting factor for cardiovascular disease. However, no epidemiological studies have ever explored the mediating role of biomarkers in the association between ozone and AS, nor weather fish oil modified such association. METHODS: Study participants were drawn from the UK biobank, and a total of 95,699 middle-aged and older adults were included in this study. Ozone was obtained from Community Multiscale Air Quality (CMAQ) model matched to residential addresses, fish oil from self-reported intake, and arterial stiffness was based on device measurements. First, we applied a double robust approach to explore the association between ozone or fish oil intake and arterial stiffness, adjusting for potential confounders at the individual and regional levels. Then, how triglycerides, apolipoprotein B (Apo B)/apolipoprotein A (ApoA) and non-high-density lipoprotein cholesterol (Non-HDL-C) mediate the relationship between ozone and AS. Last, the modifying role of fish oil was further explored by stratified analysis. RESULTS: The mean age of participants was 55 years; annual average ozone exposure was associated with ASI (beta:0.189 [95%CI: 0.146 to 0.233], P < 0.001), and compared to participants who did not consume fish oil, fish oil users had a lower ASI (beta: 0.061 [95%CI: -0.111 to -0.010], P = 0.016). The relationship between ozone exposure and AS was mediated by triglycerides, ApoB/ApoA, and Non-HDL-C with mediation proportions ranging from 10.90% to 18.30%. Stratified analysis showed lower estimates on the ozone-AS relationship in fish oil users (P = 0.011). CONCLUSION: Ozone exposure was associated with higher levels of arterial stiffness, in contrast to fish oil consumption, which showed a protective association. The association between ozone exposure and arterial stiffness was partially mediated by some biomarkers. In the general population, fish oil consumption might provide prote

  • Journal article
    Opgenoorth HJ, Robinson R, Ngwira CM, Garcia Sage K, Kuznetsova M, El Alaoui M, Boteler D, Gannon J, Weygand J, Merkin V, Nykyri K, Kosar B, Welling D, Eastwood J, Eggington J, Heyns M, Kaggwa Kwagala N, Sur D, Gjerloev Jet al., 2024,

    Earth’s geomagnetic environment—progress and gaps in understanding, prediction, and impacts

    , Advances in Space Research, ISSN: 0273-1177

    Understanding of Earth’s geomagnetic environment is critical to mitigating the space weather impacts caused by disruptive geoelectric fields in power lines and other conductors on Earth’s surface. These impacts are the result of a chain of processes driven by the solar wind and linking Earth’s magnetosphere, ionosphere, thermosphere and Earth’s surface. Tremendous progress has been made over the last two decades in understanding the solar wind driving mechanisms, the coupling mechanisms connecting the magnetically controlled regions of near-Earth space, and the impacts of these collective processes on human technologies on Earth’s surface. Studies of solar wind drivers have been focused on understanding the responses of the geomagnetic environment to spatial and temporal variations in the solar wind associated with Coronal Mass Ejections, Corotating Interaction Regions, Interplanetary Shocks, High-Speed Streams, and other interplanetary magnetic field structures. Increasingly sophisticated numerical models are able to simulate the magnetospheric response to the solar wind forcing associated with these structures. Magnetosphere-ionosphere-thermosphere coupling remains a great challenge, although new observations and sophisticated models that can assimilate disparate data sets have improved the ability to specify the electrodynamic properties of the high latitude ionosphere. The temporal and spatial resolution needed to predict the electric fields, conductivities, and currents in the ionosphere is driving the need for further advances. These parameters are intricately tied to auroral phenomena—energy deposition due to Joule heating and precipitating particles, motions of the auroral boundary, and ion outflow. A new view of these auroral processes is emerging that focuses on small-scale structures in the magnetosphere and their ionospheric effects, which may include the rapid variations in current associated with geomagnetically indu

  • Journal article
    Wu Y-T, Kitwiroon N, Beevers S, Barratt B, Brayne C, Cerin E, Franklin R, Houlden V, Woods B, Zied Abozied E, Prina M, Matthews Fet al., 2024,

    The longitudinal associations between ambient air pollution exposure and dementia in the UK: results from the cognitive function and ageing study II and Wales.

    , BMC Public Health, Vol: 24

    BACKGROUND: Air pollution has been recognised as a potential risk factor for dementia. Yet recent epidemiological research shows mixed evidence. The aim of this study is to investigate the longitudinal associations between ambient air pollution exposure and dementia in older people across five urban and rural areas in the UK. METHODS: This study was based on two population-based cohort studies of 11329 people aged ≥ 65 in the Cognitive Function and Ageing Study II (2008-2011) and Wales (2011-2013). An algorithmic diagnosis method was used to identify dementia cases. Annual concentrations of four air pollutants (NO2, O3, PM10, PM2.5) were modelled for the year 2012 and linked via the participants' postcodes. Multistate modelling was used to examine the effects of exposure to air pollutants on incident dementia incorporating death and adjusting for sociodemographic factors and area deprivation. A random-effect meta-analysis was carried out to summarise results from the current and nine existing cohort studies. RESULTS: Higher exposure levels of NO2 (HR: 1.04; 95% CI: 0.94, 1.14), O3 (HR: 0.90; 95% CI: 0.70, 1.15), PM10 (HR: 1.17; 95% CI: 0.86, 1.58), PM2.5 (HR: 1.41; 95% CI: 0.71, 2.79) were not strongly associated with dementia in the two UK-based cohorts. Inconsistent directions and strengths of the associations were observed across the two cohorts, five areas, and nine existing studies. CONCLUSIONS: In contrast to the literature, this study did not find clear associations between air pollution and dementia. Future research needs to investigate how methodological and contextual factors can affect evidence in this field and clarity the influence of air pollution exposure on cognitive health over the lifecourse.

  • Journal article
    Benetazzo A, Halsne T, Breivik Ø, Strand KO, Callaghan AH, Barbariol F, Davison S, Bergamasco F, Molina C, Bastianini Met al., 2024,

    On the short-term response of entrained air bubbles in the upper ocean: a case study in the north Adriatic Sea

    , Ocean Science Journal, Vol: 20, Pages: 639-660, ISSN: 2005-7172

    Air bubbles in the upper ocean are generated mainly by waves breaking at the air–sea interface. As such, after the waves break, entrained air bubbles evolve in the form of plumes in the turbulent flow, exchange gas with the surrounding water, and may eventually rise to the surface. To shed light on the short-term response of entrained bubbles in different stormy conditions and to assess the link between bubble plume penetration depth, mechanical and thermal forcings, and the air–sea transfer velocity of CO2, a field experiment was conducted from an oceanographic research tower in the north Adriatic Sea. Air bubble plumes were observed using high-resolution echosounder data from an upward-looking 1000 kHz sonar. The backscatter signal strength was sampled at a high resolution, 0.5 s in time and 2.5 cm along the vertical direction. Time series profiles of the bubble plume depth were established using a variable threshold procedure applied to the backscatter strength. The data show the occurrence of bubbles organized into vertical plume-like structures, drawn downwards by wave-generated turbulence and other near-surface circulations, and reaching the seabed at 17 m depth under strong forcing. We verify that bubble plumes adapt rapidly to wind and wave conditions and have depths that scale approximately linearly with wind speed. Scaling with the wind–wave Reynolds number is also proposed to account for the sea-state severity in the plume depth prediction. Results show a correlation between measured bubble depths and theoretical air–sea CO2 transfer velocity parametrized with wind-only and wind/wave formulations. Further, our measurements corroborate previous results suggesting that the sinking of newly formed cold-water masses helps bring bubbles to greater depths than those reached in stable conditions for the water column. The temperature difference between air and sea seems sufficient for describing this intensifica

  • Journal article
    Prasow-Emond M, Hlavacek-Larrondo J, Fogarty K, Artigau E, Mawet D, Gandhi P, Steiner JF, Rameau J, Lafreniere D, Fabian A, Walton DJ, Doyon R, Ren BBet al., 2024,

    The First High-contrast Images of Near High-mass X-Ray Binaries with Keck/NIRC2

    , ASTROPHYSICAL JOURNAL, Vol: 967, ISSN: 0004-637X
  • Journal article
    Lyster SJ, Whittaker A, Farnsworth A, Hampson GJet al., 2024,

    Constraining flow and sediment transport intermittency in the geological past

    , Geological Society of America Bulletin, Vol: 136, Pages: 2425-2442, ISSN: 0016-7606

    Quantitative investigations of ancient rivers usually provide insights into either instantaneous or mean flow conditions. There is a critical gap between these time scales of investigation, which reflects the intermittency of flow and sediment transport, and closing this gap is crucial to fully explore the dynamics and evolution of ancient fluvial landscapes. Here, we combined fluvial stratigraphic data sets, flow and sediment transport models, and paleoclimate general circulation model (GCM) results to develop new methods to estimate intermittency in the geological past, specifically flow intermittency factors (Iw) and sediment transport intermittency factors (Is), and we show how they can be used to explore past hydrograph shapes. We illustrated these methods using the Upper Cretaceous Last Chance Ferron Sandstone in Utah, western United States. For sand-transporting flow conditions in Last Chance Ferron rivers, we estimated Iw values of 0.54−0.90, which imply that channel-forming conditions were sustained for the majority of the year, consistent with perennial systems in which relatively large discharges were sustained. In contrast, for gravel-transporting flow conditions, Iw values of 0.28−0.38 suggest that the largest formative flows may have occupied Last Chance Ferron rivers for nearly a third of the year, which could be explained by a monsoonal system in which high-magnitude discharge events were sustained, or a subtropical system in which high-magnitude discharge events had short durations but high frequencies. Meanwhile, Is values of 0.075−0.15 suggest that annual sediment budgets could have been transported in as little as 10 days and up to 2 months, if channel-forming conditions were sustained, and these values highlight that small changes in the duration of channel-forming conditions could significantly impact sediment budgets. Our results are consistent with independent facies- and proxy-based insights into Last Chance Ferron rivers

  • Journal article
    Rood AH, Stafford PJ, Rood DH, 2024,

    San Andreas fault earthquake hazard model validation using probabilistic analysis of precariously balanced rocks and Bayesian updating

    , Seismological Research Letters, Vol: 95, Pages: 1776-1793, ISSN: 0895-0695

    The Mojave section of the San Andreas fault is the closest section to the megacity of greater Los Angeles. A major issue for the population is that the life‐threatening hazard estimate of a future rare, large earthquake on this fault section is highly uncertain and untested at timescales and ground motions beyond limited historical recordings. Of relevance to this issue is that the nearby precariously balanced rocks at Lovejoy Buttes have survived these ground motions, despite the past tens of thousands of years of San Andreas fault earthquakes. Therefore, the fragility and age of these precariously balanced rocks provide crucial ground‐motion constraints over the timescales of rare, large San Andreas fault earthquakes. We rigorously validate and update an earthquake hazard model for the Mojave section of the San Andreas fault using the independent observational data of precariously balanced rock survival at Lovejoy Buttes. The joint probability of survival of all five studied precariously balanced rocks was used to validate the hazard estimates and reweight the estimates using new Bayesian updating methods to deliver an improved, precariously balanced rock‐informed earthquake hazard estimate. At an annual frequency of exceedance of 1 x 10^-4 yr^-1⁠, equivalent to a mean return period of 10,000 yr, the precariously balanced rock survival data significantly reduced the mean hazard ground‐motion estimate by 65% and the 5th–95th fractile uncertainty range by 72%. The magnitude of this inconsistency provides striking evidence for the need to reevaluate both the source and ground‐motion components of our earthquake hazard model for the southern San Andreas fault.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1154&limit=10&resgrpMemberPubs=true&resgrpMemberPubs=true&page=8&respub-action=search.html Current Millis: 1726716225356 Current Time: Thu Sep 19 04:23:45 BST 2024

Join the network

If you’d like to join the network, just email us here.