Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Hewitt RJ, Bartlett EC, Ganatra R, Butt H, Kouranos V, Chua F, Kokosi M, Molyneaux PL, Desai SR, Wells AU, Jenkins RG, Renzoni EA, Kemp S, Devaraj A, George PMet al., 2022,

    Lung cancer screening provides an opportunity for early diagnosis and treatment of interstitial lung disease

    , THORAX, ISSN: 0040-6376
  • Journal article
    Allen RJ, Stockwell A, Oldham JM, Guillen-Guio B, Schwartz DA, Maher TM, Flores C, Noth I, Yaspan BL, Jenkins RG, Wain Let al., 2022,

    Genome-wide association study across five cohorts identifies five novel loci associated with idiopathic pulmonary fibrosis

    , THORAX, Vol: 77, Pages: 829-833, ISSN: 0040-6376
  • Journal article
    Kraven LM, Taylor AR, Molyneaux PL, Maher T, McDonough J, Mura M, Yang I, Schwartz DA, Huang Y, Noth I, Ma SF, Yeo AJ, Fahy WA, Jenkins G, Wain Let al., 2022,

    Cluster analysis of transcriptomic datasets to identify endotypes of idiopathic pulmonary fibrosis

    , Thorax, ISSN: 0040-6376

    Background Considerable clinical heterogeneity in idiopathic pulmonary fibrosis (IPF) suggests the existence of multiple disease endotypes. Identifying these endotypes would improve our understanding of the pathogenesis of IPF and could allow for a biomarker-driven personalised medicine approach. We aimed to identify clinically distinct groups of patients with IPF that could represent distinct disease endotypes.Methods We co-normalised, pooled and clustered three publicly available blood transcriptomic datasets (total 220 IPF cases). We compared clinical traits across clusters and used gene enrichment analysis to identify biological pathways and processes that were over-represented among the genes that were differentially expressed across clusters. A gene-based classifier was developed and validated using three additional independent datasets (total 194 IPF cases).Findings We identified three clusters of patients with IPF with statistically significant differences in lung function (p=0.009) and mortality (p=0.009) between groups. Gene enrichment analysis implicated mitochondrial homeostasis, apoptosis, cell cycle and innate and adaptive immunity in the pathogenesis underlying these groups. We developed and validated a 13-gene cluster classifier that predicted mortality in IPF (high-risk clusters vs low-risk cluster: HR 4.25, 95% CI 2.14 to 8.46, p=3.7×10−5).Interpretation We have identified blood gene expression signatures capable of discerning groups of patients with IPF with significant differences in survival. These clusters could be representative of distinct pathophysiological states, which would support the theory of multiple endotypes of IPF. Although more work must be done to confirm the existence of these endotypes, our classifier could be a useful tool in patient stratification and outcome prediction in IPF.

  • Journal article
    Fabbri L, Moss S, Khan FA, Chi W, Xia J, Robinson K, Smyth AR, Jenkins G, Stewart Iet al., 2022,

    Parenchymal lung abnormalities following hospitalisation for COVID-19 and viral pneumonitis: a systematic review and meta-analysis

    , Thorax, ISSN: 0040-6376

    Introduction Persisting respiratory symptoms in COVID-19 survivors may be related to development of pulmonary fibrosis. We assessed the proportion of chest CT scans and pulmonary function tests consistent with parenchymal lung disease in the follow-up of people hospitalised with COVID-19 and viral pneumonitis.Methods Systematic review and random effects meta-analysis of proportions using studies of adults hospitalised with SARS-CoV-2, SARS-CoV, MERS-CoV or influenza pneumonia and followed up within 12 months. Searches performed in MEDLINE and Embase. Primary outcomes were proportion of radiological sequelae on CT scans; restrictive impairment; impaired gas transfer. Heterogeneity was explored in meta-regression.Results Ninety-five studies (98.9% observational) were included in qualitative synthesis, 70 were suitable for meta-analysis including 60 SARS-CoV-2 studies with a median follow-up of 3 months. In SARS-CoV-2, the overall estimated proportion of inflammatory sequelae was 50% during follow-up (0.50; 95% CI 0.41 to 0.58; I2=95%), fibrotic sequelae were estimated in 29% (0.29; 95% CI 0.22 to 0.37; I2=94.1%). Follow-up time was significantly associated with estimates of inflammatory sequelae (−0.036; 95% CI −0.068 to –0.004; p=0.029), associations with fibrotic sequelae did not reach significance (−0.021; 95% CI −0.051 to 0.009; p=0.176). Impaired gas transfer was estimated at 38% of lung function tests (0.38 95% CI 0.32 to 0.44; I2=92.1%), which was greater than restrictive impairment (0.17; 95% CI 0.13 to 0.23; I2=92.5%), neither were associated with follow-up time (p=0.207; p=0.864).Discussion Sequelae consistent with parenchymal lung disease were observed following COVID-19 and other viral pneumonitis. Estimates should be interpreted with caution due to high heterogeneity, differences in study casemix and initial severity.

  • Journal article
    Khan F, Howard L, Hearson G, Edwards C, Barber C, Jones S, Wilson AM, Maher TM, Saini G, Stewart I, Jenkins Get al., 2022,

    Clinical utility of home versus hospital spirometry in fibrotic ILD: evaluation following INJUSTIS interim analysis

    , Annals of the American Thoracic Society, Vol: 19, Pages: 506-510, ISSN: 1546-3222
  • Journal article
    Wilkinson AL, John AE, Barrett JW, Gower E, Morrison VS, Man Y, Pun KT, Roper JA, Luckett JC, Borthwick LA, Barksby BS, Burgoyne RA, Barnes R, Fisher AJ, Procopiou PA, Hatley RJD, Barrett TN, Marshall RP, Macdonald SJF, Jenkins RG, Slack RJet al., 2021,

    Pharmacological characterisation of GSK3335103, an oral alpha v beta 6 integrin small molecule RGD-mimetic inhibitor for the treatment of fibrotic disease

    , European Journal of Pharmacology, Vol: 913, Pages: 1-10c, ISSN: 0376-6357

    Fibrosis is the formation of scar tissue due to injury or long-term inflammation and is a leading cause of morbidity and mortality. Activation of the pro-fibrotic cytokine transforming growth factor-β (TGFβ) via the alpha-V beta-6 (αvβ6) integrin has been identified as playing a key role in the development of fibrosis. Therefore, a drug discovery programme to identify an orally bioavailable small molecule αvβ6 arginyl-glycinyl-aspartic acid (RGD)-mimetic was initiated. As part of a medicinal chemistry programme GSK3335103 was identified and profiled in a range of pre-clinical in vitro and in vivo systems. GSK3335103 was shown to bind to the αvβ6 with high affinity and demonstrated fast binding kinetics. In primary human lung epithelial cells, GSK3335103-induced concentration- and time-dependent internalisation of αvβ6 with a rapid return of integrin to the cell surface observed after washout. Following sustained engagement of the αvβ6 integrin in vitro, lysosomal degradation was induced by GSK3335103. GSK3335103 was shown to engage with the αvβ6 integrin and inhibit the activation of TGFβ in both ex vivo IPF tissue and in a murine model of bleomycin-induced lung fibrosis, as measured by αvβ6 engagement, TGFβ signalling and collagen deposition, with a prolonged duration of action observed in vivo. In summary, GSK3335103 is a potent αvβ6 inhibitor that attenuates TGFβ signalling in vitro and in vivo with a well-defined pharmacokinetic/pharmacodynamic relationship. This translates to a significant reduction of collagen deposition in vivo and therefore GSK3335103 represents a potential novel oral therapy for fibrotic disorders.

  • Journal article
    Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJDet al., 2021,

    Emerging therapeutic opportunities for integrin inhibitors

    , NATURE REVIEWS DRUG DISCOVERY, Vol: 21, Pages: 60-78, ISSN: 1474-1776
  • Journal article
    Khan FA, Stewart I, Fabbri L, Moss S, Robinson K, Smyth AR, Jenkins Get al., 2021,

    Systematic review and meta-analysis of anakinra, sarilumab, siltuximab and tocilizumab for COVID-19

    , Thorax, Vol: 76, Pages: 907-919, ISSN: 0040-6376

    Background There is accumulating evidence for an overly activated immune response in severe COVID-19, with several studies exploring the therapeutic role of immunomodulation. Through systematic review and meta-analysis, we assess the effectiveness of specific interleukin inhibitors for the treatment of COVID-19.Methods Electronic databases were searched on 7 January 2021 to identify studies of immunomodulatory agents (anakinra, sarilumab, siltuximab and tocilizumab) for the treatment of COVID-19. The primary outcomes were severity on an Ordinal Scale measured at day 15 from intervention and days to hospital discharge. Key secondary endpoints included overall mortality.Results 71 studies totalling 22 058 patients were included, 6 were randomised trials. Most studies explored outcomes in patients who received tocilizumab (60/71). In prospective studies, tocilizumab was associated with improved unadjusted survival (risk ratio 0.83, 95% CI 0.72 to 0.96, I2=0.0%), but conclusive benefit was not demonstrated for other outcomes. In retrospective studies, tocilizumab was associated with less severe outcomes on an Ordinal Scale (generalised OR 1.34, 95% CI 1.10 to 1.64, I2=98%) and adjusted mortality risk (HR 0.52, 95% CI 0.41 to 0.66, I2=76.6%). The mean difference in duration of hospitalisation was 0.36 days (95% CI −0.07 to 0.80, I2=93.8%). There was substantial heterogeneity in retrospective studies, and estimates should be interpreted cautiously. Other immunomodulatory agents showed similar effects to tocilizumab, but insufficient data precluded meta-analysis by agent.Conclusion Tocilizumab was associated with a lower relative risk of mortality in prospective studies, but effects were inconclusive for other outcomes. Current evidence for the efficacy of anakinra, siltuximab or sarilumab in COVID-19 is insufficient, with further studies urgently needed for conclusive findings.

  • Journal article
    Bui LT, Winters NI, Chung M-I, Joseph C, Gutierrez AJ, Habermann AC, Adams TS, Schupp JC, Poli S, Peter LM, Taylor CJ, Blackburn JB, Richmond BW, Nicholson AG, Rassl D, Wallace WA, Rosas IO, Jenkins RG, Kaminski N, Kropski JA, Banovich NEet al., 2021,

    Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity

    , NATURE COMMUNICATIONS, Vol: 12
  • Journal article
    Hopkinson NS, Jenkins G, Hart N, 2021,

    COVID-19 and what comes after?

    , THORAX, Vol: 76, Pages: 324-325, ISSN: 0040-6376
  • Journal article
    Dhindsa RS, Mattsson J, Nag A, Wang Q, Wain L, Allen R, Wigmore EM, Ibanez K, Vitsios D, Deevi SVV, Wasilewski S, Karlsson M, Lassi G, Olsson H, Muthas D, Monkley S, Mackay A, Murray L, Young S, Haefliger C, Maher TM, Belvisi MG, Jenkins G, Molyneaux PL, Platt A, Petrovski Set al., 2021,

    Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis

    , Communications Biology, Vol: 4, ISSN: 2399-3642

    Idiopathic pulmonary fibrosis (IPF) is a fatal disorder characterised by progressive, destructive lung scarring. Despite substantial progress, the genetic determinants of this disease remain incompletely defined. Using whole genome and whole exome sequencing data from 752 individuals with sporadic IPF and 119,055 UK Biobank controls, we performed a variant-level exome-wide association study (ExWAS) and gene-level collapsing analyses. Our variant-level analysis revealed a novel association between a rare missense variant in SPDL1 and IPF (NM_017785.5:g.169588475 G > A p.Arg20Gln; p = 2.4 × 10−7, odds ratio = 2.87, 95% confidence interval: 2.03–4.07). This signal was independently replicated in the FinnGen cohort, which contains 1028 cases and 196,986 controls (combined p = 2.2 × 10−20), firmly associating this variant as an IPF risk allele. SPDL1 encodes Spindly, a protein involved in mitotic checkpoint signalling during cell division that has not been previously described in fibrosis. To the best of our knowledge, these results highlight a novel mechanism underlying IPF, providing the potential for new therapeutic discoveries in a disease of great unmet need.

  • Journal article
    Leavy OC, Ma S-F, Molyneaux PL, Maher TM, Oldham JM, Flores C, Noth I, Jenkins RG, Dudbridge F, Wain LV, Allen RJ, Leavy OC, Ma S-F, Molyneaux PL, Maher TM, Oldham JM, Flores C, Noth I, Jenkins RG, Dudbridge F, Wain LV, Allen RJet al., 2020,

    Proportion of idiopathic pulmonary fibrosis risk explained by known Common genetic loci in European populations

    , American Journal of Respiratory and Critical Care Medicine, Vol: 203, Pages: 775-778, ISSN: 1073-449X

    Genome-wide association studies have identified 14 genetic loci associated with susceptibility to idiopathic pulmonary fibrosis (IPF), a devastating lung disease with poor prognosis. Of these, the variant with the strongest association, rs35705950, is located in the promoter region of the MUC5B gene and has a risk allele (T) frequency of 30-35% in IPF cases. Here we present estimates of the proportion of disease liability explained by each of the 14 IPF risk variants as well as estimates of the proportion of cases that can be attributed to each variant. We estimate that rs35705950 explains 5.9-9.4% of disease liability, which is much lower than previously reported estimates. Of every 100,000 individuals with the rs35705950_GG genotype we estimate 30 will have IPF, whereas for every 100,000 individuals with the rs35705950_GT genotype 152 will have IPF. Quantifying the impact of genetic risk factors on disease liability improves our understanding of the underlying genetic architecture of IPF and provides insight into the impact of genetic factors in risk prediction modelling.

  • Journal article
    George PM, Barratt SL, Condliffe R, Desai SR, Devaraj A, Forrest I, Gibbons MA, Hart N, Jenkins RG, McAuley DF, Patel BV, Thwaite E, Spencer LGet al., 2020,

    Respiratory follow-up of patients with COVID-19 pneumonia

    , Thorax, Vol: 75, Pages: 1009-1016, ISSN: 0040-6376

    The COVID-19 pandemic has led to an unprecedented surge in hospitalised patients with viral pneumonia. The most severely affected patients are older men, individuals of black and Asian minority ethnicity and those with comorbidities. COVID-19 is also associated with an increased risk of hypercoagulability and venous thromboembolism. The overwhelming majority of patients admitted to hospital have respiratory failure and while most are managed on general wards, a sizeable proportion require intensive care support. The long-term complications of COVID-19 pneumonia are starting to emerge but data from previous coronavirus outbreaks such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) suggest that some patients will experience long-term respiratory complications of the infection. With the pattern of thoracic imaging abnormalities and growing clinical experience, it is envisaged that interstitial lung disease and pulmonary vascular disease are likely to be the most important respiratory complications. There is a need for a unified pathway for the respiratory follow-up of patients with COVID-19 balancing the delivery of high-quality clinical care with stretched National Health Service (NHS) resources. In this guidance document, we provide a suggested structure for the respiratory follow-up of patients with clinicoradiological confirmation of COVID-19 pneumonia. We define two separate algorithms integrating disease severity, likelihood of long-term respiratory complications and functional capacity on discharge. To mitigate NHS pressures, virtual solutions have been embedded within the pathway as has safety netting of patients whose clinical trajectory deviates from the pathway. For all patients, we suggest a holistic package of care to address breathlessness, anxiety, oxygen requirement, palliative care and rehabilitation.

  • Journal article
    John AE, Graves RH, Pun KT, Vitulli G, Forty EJ, Mercer PF, Morrell JL, Barrett JW, Rogers RF, Hafeji M, Bibby LI, Gower E, Morrison VS, Man Y, Roper JA, Luckett JC, Borthwick LA, Barksby BS, Burgoyne RA, Barnes R, Le J, Flint DJ, Pyne S, Habgood A, Organ LA, Joseph C, Edwards-Pritchard RC, Maher TM, Fisher AJ, Gudmann NS, Leeming DJ, Chambers RC, Lukey PT, Marshall RP, Macdonald SJF, Jenkins RG, Slack RJet al., 2020,

    Translational pharmacology of an inhaled small molecule alpha v beta 6 integrin inhibitor for idiopathic pulmonary fibrosis

    , Nature Communications, Vol: 11, ISSN: 2041-1723

    The αvβ6 integrin plays a key role in the activation of transforming growth factor-β (TGFβ), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvβ6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and disease-related end points. Here, we report, GSK3008348 binds to αvβ6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFβ signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvβ6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvβ6, induces prolonged inhibition of TGFβ signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy.

  • Journal article
    Molyneaux PL, Smith JJ, Saunders P, Chua F, Wells AU, Renzoni EA, Nicholson AG, Fahy WA, Jenkins RG, Maher TMet al., 2020,

    Bronchoalveolar lavage is safe and well tolerated in individuals with idiopathic pulmonary fibrosis: an analysis of the PROFILE study

    , American Journal of Respiratory and Critical Care Medicine, Vol: 203, Pages: 136-139, ISSN: 1073-449X
  • Journal article
    Leavy O, Ma S-F, Molyneaux P, Maher T, Oldham J, Flores C, Noth I, Jenkins G, Dudbridge F, Wain L, Allen Ret al., 2020,

    Proportion of idiopathic pulmonary fibrosis risk explained by known genetic loci

    Genome-wide association studies have identified 14 genetic loci associated with susceptibility to idiopathic pulmonary fibrosis (IPF), a devastating lung disease with poor prognosis. Of these, the variant with the strongest association, rs35705950, is located in the promoter region of the MUC5B gene and has a risk allele (T) frequency of 30-35% in IPF cases. Here we present estimates of the proportion of disease liability explained by each of the 14 IPF risk variants as well as estimates of the proportion of cases that can be attributed to each variant. We estimate that rs35705950 explains 5.9-9.4% of disease liability, which is much lower than previously reported estimates. Of every 100,000 individuals with the rs35705950_GG genotype we estimate 30 will have IPF, whereas for every 100,000 individuals with the rs35705950_GT genotype 152 will have IPF. Quantifying the impact of genetic risk factors on disease liability improves our understanding of the underlying genetic architecture of IPF and provides insight into the impact of genetic factors in risk prediction modelling.

  • Journal article
    Kumar S, Regue M, Isaacs M, Freeman E, Eslava Set al., 2020,

    All-Inorganic CsPbBr3 nanocrystals: gram-scale mechanochemical synthesis and selective photocatalytic CO2 reduction to methane

    , ACS Applied Energy Materials, Vol: 3, Pages: 4509-4522, ISSN: 2574-0962

    Halide perovskite CsPbBr3 has recently gained wide interest for its application in solar cells, optoelectronics and artificial photosynthesis, but further progress is needed to develop greener and more scalable synthesis procedures and for their application in humid environments. Herein, we report a fast and convenient mechanochemical synthesis of CsPbBr3 perovskite nanocrystals with scale-up capability and control over crystal size and morphology. These perovskite nanocrystals show excellent crystallinity and tunable morphologies, from nanorods to nanospheres and nanosheets, simply changing the mechanochemical reaction conditions such as ball milling time, ball size and Cs precursor. Furthermore, we explore their use for gas-phase photocatalytic CO2 reduction using water vapor as proton source. A photocatalytic conversion of CO2 and H2O(g) to 0.43 (0.03) μmol CH4 g-1 h-1, 2.25 (0.09) μmol CO g-1 h-1 and 0.08 (0.02) μmol H2 g-1 h-1 was for example achieved with CsPbBr3 nanosheets and simulated sunlight, keeping 30% of this activity over three consecutive cycles. When these CsPbBr3 nanosheets were mechanochemically prepared together with Cu-loaded reduced graphene oxide (Cu-RGO), the photocatalytic activity significantly improved to 12.7 (0.95) μmol CH4 g-1 h-1, 0.46 (0.11) μmol CO g-1 h-1 and 0.27 (0.02) μmol H2 g-1 h-1, and a 90% of this activity was retained over three consecutive cycles. The selectivity for CH4 increased to 98.5(0.93)% on an electron basis and a remarkable apparent quantum efficiency of 1.10(0.15)% at 523 nm was achieved. This enhanced activity, selectivity and stability were assigned to the better charge separation, visible light absorption, CO2 adsorption & activation, and hydrophobic character of the obtained composites. These results will contribute to the rational design and application of halide perovskites for CO2 photocatalytic reduction.

  • Journal article
    Freeman E, Kumar S, Thomas SR, Pickering H, Fermin DJ, Eslava Set al., 2020,

    PrFeO3 Photocathodes Prepared Through Spray Pyrolysis

    , CHEMELECTROCHEM, Vol: 7, Pages: 1365-1372, ISSN: 2196-0216
  • Journal article
    Rood S, Eslava S, Manigrasso A, Bannister Cet al., 2020,

    Recent advances in gasoline three-way catalyst formulation: A review

    , PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, Vol: 234, Pages: 936-949, ISSN: 0954-4070
  • Journal article
    Freeman E, Kumar S, Celorrio V, Park MS, Kim JH, Fermin DJ, Eslava Set al., 2019,

    Strategies for deposition of LaFeO3 photocathodes: improving photocurrent with a polymer template

    , Sustainable Energy and Fuels, Vol: 4, Pages: 884-894, ISSN: 2398-4902

    Renewable and sustainable alternatives to fossil fuels are needed to limit the impact of global warming. Using metal oxide semiconductors as photoelectrodes within photoelectrochemical cell devices, in which solar energy can be stored and ultimately used for electricity generation, is one such alternative. LaFeO3 (LFO) has been shown to be an active photocathode on illumination of visible light but is restricted by low surface area and relatively low photocurrents achieved. The work herein utilizes a spin coating deposition method with a solution of nitrate precursors combined with non-ionic polymeric surfactant (Triton X-100). This allowed for the formation of a uniform porous LFO film of high coverage on a fluorine-doped tin oxide coated substrate, through directing growth and preventing particle aggregation during film fabrication. These porous LFO films achieved an enhanced photocurrent of -161±6 µA cm-2 at +0.43 VRHE, in addition to a remarkable high onset potential of +1.4 VRHE for cathodic photocurrent. It was additionally shown that this attained film quality and activity was superior to other film fabrication methods such as doctor blading and spray pyrolysis. With this polymer templating method for LFO films, not only are higher photocurrents achieved but there are also added benefits such as better charge separation, higher efficiencies, higher specific electrochemically-active surface area and improved stability.

  • Journal article
    Regue M, Sibby S, Ahmet IY, Friedrich D, Abdi FF, Johnson AL, Eslava Set al., 2019,

    TiO2 photoanodes with exposed {010} facets grown by aerosol-assisted chemical vapor deposition of a titanium oxo/alkoxy cluster

    , JOURNAL OF MATERIALS CHEMISTRY A, Vol: 7, Pages: 19161-19172, ISSN: 2050-7488
  • Journal article
    Zhang J, Eslava S, 2019,

    Understanding charge transfer, defects and surface states at hematite photoanodes

    , SUSTAINABLE ENERGY & FUELS, Vol: 3, Pages: 1351-1364, ISSN: 2398-4902
  • Journal article
    Poli I, Hintermair U, Regue M, Kumar S, Sackville EV, Baker J, Watson TM, Eslava S, Cameron PJet al., 2019,

    Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water

    , Nature Communications, Vol: 10, Pages: 1-10, ISSN: 2041-1723

    Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr3-based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr3 as an inexpensive and efficient protection strategy. We achieve a record stability of 30 h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm−2 at 1.23 VRHE. We further demonstrate the versatility of our approach by grafting a molecular Ir-based water oxidation catalyst on the electrolyte-facing surface of the sealing graphite sheet, which cathodically shifts the onset potential of the composite photoanode due to accelerated charge transfer. These results suggest an efficient route to develop stable halide perovskite based electrodes for photoelectrochemical solar fuel generation.

  • Conference paper
    Zhang Y, Kumar S, Marken F, Krasny M, Roake E, Eslava S, Dunn S, Da Como E, Bowen CRet al., 2019,

    Pyro-electrolytic water splitting for hydrogen generation

    , 4th International Conference on Nanogenerator and Piezotronics (NGPT), Publisher: ELSEVIER SCIENCE BV, Pages: 183-191, ISSN: 2211-2855
  • Conference paper
    Kumar S, Poli I, Isaacs MA, Regue M, Eslava Set al., 2019,

    Mechanochemical synthesis of all-Inorganic CsPbBr3 nanorods and their use in selective photocatalytic hydrogenation of CO2

    , National Meeting of the American-Chemical-Society (ACS), Publisher: AMER CHEMICAL SOC, ISSN: 0065-7727
  • Journal article
    Walsh D, Zhang J, Regue M, Dassanayake R, Eslava Set al., 2019,

    Simultaneous Formation of FeOx Electrocatalyst Coating within Hematite Photoanodes for Solar Water Splitting

    , ACS APPLIED ENERGY MATERIALS, Vol: 2, Pages: 2043-2052, ISSN: 2574-0962
  • Journal article
    Castresana PA, Martinez SM, Freeman E, Eslava S, Di Lorenzo Met al., 2019,

    Electricity generation from moss with light-driven microbial fuel cells

    , ELECTROCHIMICA ACTA, Vol: 298, Pages: 934-942, ISSN: 0013-4686
  • Journal article
    Rood SC, Ahmet HB, Gomez-Ramon A, Torrente-Murciano L, Reina TR, Eslava Set al., 2019,

    Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane

    , APPLIED CATALYSIS B-ENVIRONMENTAL, Vol: 242, Pages: 358-368, ISSN: 0926-3373
  • Journal article
    Jo W-K, Kumar S, Eslava S, Tonda Set al., 2018,

    Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels

    , APPLIED CATALYSIS B-ENVIRONMENTAL, Vol: 239, Pages: 586-598, ISSN: 0926-3373
  • Journal article
    Regue M, Armstrong K, Walsh D, Richards E, Johnson AL, Eslava Set al., 2018,

    Mo-doped TiO2 photoanodes using [Ti4Mo2O8(OEt)(10)](2) bimetallic oxo cages as a single source precursor

    , SUSTAINABLE ENERGY & FUELS, Vol: 2, Pages: 2674-2686, ISSN: 2398-4902

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1123&limit=30&respub-action=search.html Current Millis: 1664273626955 Current Time: Tue Sep 27 11:13:46 BST 2022