Abstract
A variety of anatomical and physiological evidence suggests that the brain performs computations using motifs that are repeated across species, brain areas, and modalities. The computational architecture of cortex, for example, is very similar from one area to another and the types, arrangements, and connections of cortical neurons are highly stereotyped. This supports the idea that each cortical area conducts calculations using similarly structured neuronal modules In addition, the remarkable self-similarity of the brain observables at the micro-, meso- and macro-scale further suggests that these motifs are repeated at increasing spatial and temporal scales supporting brain activity from primary motor and sensory processing to higher-level behaviour and cognition. We will briefly review the biological bases of canonical brain circuits and how canonical computational motifs can be repeated across spatial and temporal scales to build a multiplexing information system able to encode and transmit information of increasing complexity. We then employ this model of brain function to unify seemingly disparate evidence on the pathophysiology of schizophrenia in a single explanatory framework.
Reference:
Turkheimer FE, Leech R, Expert P, Lord LD, Vernon AC. The brain’s code and its canonical computational motifs. From sensory cortex to the default mode network: A multi-scale model of brain function in health and disease. Neurosci Biobehav Rev. 2015 Aug;55:211-22.