13.00 (Room C2) Enrico Fatighenti (Warwick): Hodge Theory via deformations of affine cones
Hodge Theory and Deformation Theory are known to be closely related: many example of this phenomenon occurs in the literature, such as the theory of Variation of Hodge Structure or the Griffiths Residues Calculus. In this talk we show in particular how part of the Hodge Theory of a smooth projective variety X with canonical bundle either ample, antiample or trivial can be reconstructed by looking at some specific graded component of the infinitesimal deformations module of its affine cone A. In an attempt of a global reconstruction theorem we then move to the study of the Derived deformations of the (punctured) affine cone, showing how to find amongst them the missing Hodge spaces.
15.00 (Room C1) Anton Isopoussu (Cambridge): K-stability, convex cones and fibrations
Test configurations are a basic object in the study of canonical metrics and K-stability. We introduce two ideas into the theory. We extend the convex structure on the ample cone to the set of test configurations. The asymptotics of a filtration are described by a convex transform on the Okounkov body of a polarisation. We describe how these convex transforms change under a convex combination of test configurations. We also discuss the K-stability of varieties which have a natural projection to a base variety. Our construction appears to unify several known examples into a single framework where we can roughly classify degenerations of fibrations into three different types: degenerations of the cocycle, degenerations of the general fibre and degenerations of the base.
17.00 (Room C4) Roberto Laface (Leibniz Universität Hannover): Decompositions of singular Abelian surfaces
Inspired by a work of Ma, in which he counts the number of decompositions of abelian surfaces by lattice-theoretical tools, we explicitly fi nd all such decompositions in the case of singular abelian surfaces. This is done by computing the transcendental lattice of products of isogenous elliptic curves with complex multiplication, generalizing a technique of Shioda and Mitani, and by studying the action of a certain class group act on the factors of a given decomposition. Incidentally, our construction provides us with an alternative and simpler formula for the number of decompositions, which is obtained via an enumeration argument. Also, we give an application of this result to singular K3 surfaces.