Abstract: I will  discuss  new  rigidity  and  rationality  phenomena  (related  to  the  phenomenon  of  Arnold  tongues)  in  the   theory  of  nonabelian  group  actions  on  the  circle. I  will  introduce  tools that  can  translate  questions  about   the  existence  of  actions  with  prescribed  dynamics,  into  finite  combinatorial  questions  that  can be answered   effectively.  There  are  connections with the  theory  of  diophantine  approximation,  and  with  the  bounded   cohomology  of  free  groups.  A  special case of  this  theory  gives  a  very  short  new  proof  of  Naimi’s  theorem   (i.e.  the conjecture  of  Jankins-Neumann)  which  was  the  last  step  in  the  classification  of taut foliations  of   Seifert  fibered  spaces.  This  is  joint  work  with  Alden  Walker.