Event image

Abstract: Personal exposure is sensitive to the personal features and behavior of the individual, and including interpersonal variability will improve the health and quality of life evaluations.Participatory sensing assesses the spatial and temporal variability of environmental indicators and is used to quantify this interpersonal variability. Transferring the participatory sensing information to a specific study population is a basic requirement for epidemiological studies in the near future. We propose a methodology to reduce the void between participatory sensing and health research. Instantaneous microscopic land-use regression modeling (µLUR) is an innovative approach. Data science techniques extract the activity-specific and route-sensitive spatiotemporal variability from the data. A data workflow to prepare and apply µLUR models to any mobile population is presented. The µLUR technique and data workflow are illustrated with models for exposure to traffic related Black Carbon. The example µLURs are available for three micro-environments; bicycle, in-vehicle, and indoor. Instantaneous noise assessments supply instantaneous traffic information to the µLURs. The activity specific models are combined into an instantaneous personal exposure model for Black Carbon. An independent external validation reached a correlation of 0.65. The µLURs can be applied to simulated behavioral patterns of individuals in epidemiological cohorts for advanced health and policy research.

 

Brief Bio: Luc Dekoninck received the MSc in Experimental Physics from Ghent University (Belgium) in 1990, and a degree in Environmental Science in 1997 at the University of Antwerp. In 2011 he started a PhD combining his experience in traffic, noise, GIS, software development and databases with his interests in air pollution: “Spatiotemporal modelling of personal exposure to traffic related particulate matter using noise as a proxy”. His current research topics focus on applications of his PhD in epidemiology and policy support.