Abstract
The uplifting and rocking of slender, free-standing structures when subjected to ground shaking may limit appreciably the seismic moments and shears that develop at their base. While the unparalleled seismic performance of rocking isolation has been documented with the through-the-centuries survival of several free-standing ancient temples; and careful post-earthquake observations in Japan during the 1940’s suggested that the increasing size of slender free-standing tombstones enhances their seismic stability; it was Housner (1963) who elucidated a size-frequency scale effect and explained that there is a safety margin between uplifting and overturning and as the size of the column or the frequency of the excitation increases, this safety margin increases appreciably to the extent that large, free-standing columns enjoy ample seismic stability. This talk revisits the important implications of this post-uplift dynamic stability and explains that the enhanced seismic stability originates from the difficulty to mobilize the rotational inertia of the free-standing column. As the size of the column increases, the seismic resistance (rotational inertia) increases with the square of the column size; whereas, the seismic demand (overturning moment) increases linearly with size. The same result applies to the articulated rocking frame given that its dynamic rocking response is identical to the rocking response of a solitary free-standing column with the same slenderness; yet, larger size. The talk concludes that the concept of rocking isolation is a unique seismic protection strategy for large, slender structures such as tall bridges—not just at the limit-state but also at the operational state.
Biography
Nicos Makris, an internationally recognized expert in structural-earthquake engineering and structural mechanics-dynamics, is the Addy Family Centennial Professor in Civil Engineering at Southern Methodist University. Makris has previously served on the faculty of the University of Notre Dame (1992-1996), the University of California, Berkeley (1996-2005), the University of Patras, Greece (2003-2014) and the University of Central Florida (2014-2018). He is a member of Academia Europaea, a distinguished visiting fellow of the Royal Academy of Engineering, UK, a member of the Congress Committee and General Assembly of the International Association of Theoretical and Applied Mechanics (IUTAM); while, he has been honored with several international prizes and awards including the Walter L. Huber Civil Engineering Research Prize from the American Society of Civil Engineering (ASCE), the T. K. Hsieh Award from the Institution of Civil Engineers, U.K. for the best paper in the Geotechnique Journal during year 1997, the Shah Family Innovation Prize from the Earthquake Engineering Research Institute (EERI), USA and the CAREER Award from the National Science Foundation, USA.
While teaching at the University of Patras, Makris served for six consecutive years as the Director of Reconstruction of the Temple of Zeus in Ancient Nemea, Greece. During that period (Jan 2003—Dec 2009) four entire columns of the Temple together with their capitals have been reconstructed.