The ability of unicellular bacteria to co-ordinate responses and to act as a multicellular population is proposed to provide an advantage to the bacterial population as a whole. A mechanism whereby bacteria can function as a multicellular population is to form a biofilm, a community of bacterial cells that is adherent to a surface, interface or to each other and encased in a self-produced polymeric matrix.
Bacteria living in biofilms have increased resistance to various antimicrobial agents and are better adapted to survive periods of environmental stress. Therefore, biofilms have a significant impact in clinical settings, where they are the causative agent of the majority of chronic infections, and in industrial settings where they cause significant damage due to corrosion and bio fouling. On the other hand microbial biofilms can also result in beneficial processes such as bio-remediation and bio-control that cannot be accomplished by bacteria that are dispersed in the environment. Knowledge of the molecular mechanism of biofilm formation should allow the development of novel treatment strategies for controlling chronic biofilm infections and the development of ecologically friendly pesticides.
Our research interests are centred on using molecular biology and biochemistry to understand how bacterial build multicellular communities called biofilms. In particular we are interested in the way the molecules in the biofilm matrix provide support and protection to biofilms formed by the Gram-positive bacterium Bacillus subtilis. We work closely with Prof Cait MacPhee a biophysicist from the University of Edinburgh, and Profs Fordyce Davidson, Michael Ferguson and Jason Swedlow from the University of Dundee.