Results
- Showing results for:
- Reset all filters
Search results
-
Journal articleHillson N, Caddick M, Cai Y, et al., 2019,
Building a global alliance of biofoundries
, NATURE COMMUNICATIONS, Vol: 10, Pages: 1-4, ISSN: 2041-1723 -
Journal articleDanson A, Jovanovic M, Buck M, et al., 2019,
Mechanisms of s54-dependent transcription initiation and regulation
, Journal of Molecular Biology, ISSN: 0022-2836Cellular RNA polymerase is a multi-subunit macromolecular assembly responsible for gene transcription, a highly regulated process conserved from bacteria to humans. In bacteria, sigma factors are employed to mediate gene-specific expression in response to a variety of environmental conditions. The major variant σ factor, σ54, has a specific role in stress responses. Unlike σ70-dependent transcription, which often can spontaneously proceed to initiation, σ54-dependent transcription requires an additional ATPase protein for activation. As a result, structures of a number of distinct functional states during the dynamic process of transcription initiation have been captured using the σ54 system with both x-ray crystallography and cryo electron microscopy, furthering our understanding of σ54-dependent transcription initiation and DNA opening. Comparisons with σ70 and eukaryotic polymerases reveal unique and common features during transcription initiation.
-
Conference paperKelwick R, Webb AJ, Wang Y, et al., 2019,
ISEV2019 Abstract Book. PT09.10: Protease biomarker detection using functionalised bioplastic-based biosensors
, ISEV 2019, Publisher: Co-Action Publishing, ISSN: 2001-3078 -
Conference paperThaore V, Moore S, Polizzi K, et al., 2019,
Cell-free multi-enzyme system for the industrial production of fine chemicals
, Chemical Engineering Day UK 2019 -
Journal articleSuckling L, McFarlane C, Sawyer C, et al., 2019,
Miniaturisation of high-throughput plasmid DNA library preparation for next-generation sequencing using multifactorial optimisation
, Synthetic and Systems Biotechnology, Vol: 4, Pages: 57-66, ISSN: 2405-805XHigh-throughput preparation of plasmid DNA libraries for next-generation sequencing (NGS) is an important capability for molecular biology laboratories. In particular, it is an essential quality control (QC) check when large numbers of plasmid variants are being generated. Here, we describe the use of the Design of Experiments (DOE) methodology to optimise the miniaturised preparation of plasmid DNA libraries for NGS, using the Illumina® Nextera XT technology and the Labcyte Echo® acoustic liquid dispensing system. Furthermore, we describe methods which can be implemented as a QC check for identifying the presence of genomic DNA (gDNA) in plasmid DNA samples and the subsequent shearing of the gDNA, which otherwise prevents the acoustic transfer of plasmid DNA. This workflow enables the preparation of plasmid DNA libraries which yield high-quality sequencing data.
-
Journal articleKylilis N, Riangrungroj P, Lai H-E, et al., 2019,
Whole-cell biosensor with tuneable limit of detection enables low-cost agglutination assays for medical diagnostic applications
, ACS Sensors, Vol: 4, Pages: 370-378, ISSN: 2379-3694Whole-cell biosensors can form the basis of affordable, easy-to-use diagnostic tests that can be readily deployed for point-of-care (POC) testing, but to date, the detection of analytes such as proteins that cannot easily diffuse across the cell membrane has been challenging. Here we developed a novel biosensing platform based on cell agglutination using an E. coli whole-cell biosensor surface-displaying nanobodies which bind selectively to a target protein analyte. As a proof-of-concept, we show the feasibility of this design can detect a model analyte at nanomolar concentrations. Moreover, we show that the design architecture is flexible by building assays optimized to detect a range of model analyte concentrations using straight-forward design rules and a mathematical model. Finally, we re-engineer our whole-cell biosensor for the detection of a medically relevant biomarker by the display of two different nanbodies against human fibrinogen and demonstrate a detection limit as low as 10 pM in diluted human plasma. Overall, we demonstrate that our agglutination technology fulfills the requirement of POC testing by combining low-cost nanobody production, customizable detection range and low detection limits. This technology has the potential to produce affordable diagnostics for field-testing in the developing world, emergency or disaster relief sites as well as routine medical testing and personalized medicine.
-
Journal articleTosi T, Hoshiga F, Millership C, et al., 2019,
Inhibition of the Staphylococcus aureus c-di-AMP cyclase DacA by direct interaction with the phosphoglucosamine mutase GlmM
, PLoS Pathogens, Vol: 15, Pages: 1-28, ISSN: 1553-7366c-di-AMP is an important second messenger molecule that plays a pivotal role in regulating fundamental cellular processes, including osmotic and cell wall homeostasis in many Gram-positive organisms. In the opportunistic human pathogen Staphylococcus aureus, c-di-AMP is produced by the membrane-anchored DacA enzyme. Inactivation of this enzyme leads to a growth arrest under standard laboratory growth conditions and a re-sensitization of methicillin-resistant S. aureus (MRSA) strains to ß-lactam antibiotics. The gene coding for DacA is part of the conserved three-gene dacA/ybbR/glmM operon that also encodes the proposed DacA regulator YbbR and the essential phosphoglucosamine mutase GlmM, which is required for the production of glucosamine-1-phosphate, an early intermediate of peptidoglycan synthesis. These three proteins are thought to form a complex in vivo and, in this manner, help to fine-tune the cellular c-di-AMP levels. To further characterize this important regulatory complex, we conducted a comprehensive structural and functional analysis of the S. aureus DacA and GlmM enzymes by determining the structures of the S. aureus GlmM enzyme and the catalytic domain of DacA. Both proteins were found to be dimers in solution as well as in the crystal structures. Further site-directed mutagenesis, structural and enzymatic studies showed that multiple DacA dimers need to interact for enzymatic activity. We also show that DacA and GlmM form a stable complex in vitro and that S. aureus GlmM, but not Escherichia coli or Pseudomonas aeruginosa GlmM, acts as a strong inhibitor of DacA function without the requirement of any additional cellular factor. Based on Small Angle X-ray Scattering (SAXS) data, a model of the complex revealed that GlmM likely inhibits DacA by masking the active site of the cyclase and preventing higher oligomer formation. Together these results provide an important mechanistic insight into how c-di-AMP production can be regulated in the cell.
-
Journal articleExley K, Reynolds C, Suckling L, et al., 2019,
Utilising datasheets for the informed automated design and build of a synthetic metabolic pathway
, Journal of Biological Engineering, Vol: 13, ISSN: 1754-1611BackgroundThe automation of modular cloning methodologies permits the assembly of many genetic designs. Utilising characterised biological parts aids in the design and redesign of genetic pathways. The characterisation information held on datasheets can be used to determine whether a biological part meets the design requirements. To manage the design of genetic pathways, researchers have turned to modelling-based computer aided design software tools.ResultAn automated workflow has been developed for the design and build of heterologous metabolic pathways. In addition, to demonstrate the powers of electronic datasheets we have developed software which can transfer part information from a datasheet to the Design of Experiment software JMP. To this end we were able to use Design of Experiment software to rationally design and test randomised samples from the design space of a lycopene pathway in E. coli. This pathway was optimised by individually modulating the promoter strength, RBS strength, and gene order targets.ConclusionThe use of standardised and characterised biological parts will empower a design-oriented synthetic biology for the forward engineering of heterologous expression systems. A Design of Experiment approach streamlines the design-build-test cycle to achieve optimised solutions in biodesign. Developed automated workflows provide effective transfer of information between characterised information (in the form of datasheets) and DoE software.
-
Conference paperAppuswamy R, Brigand KL, Barbry P, et al., 2019,
OligoArchive: Using DNA in the DBMS storage hierarchy
, CIDR 2019 -
Journal articleWilkinson OJ, Martín-González A, Kang H, et al., 2019,
CtIP forms a tetrameric dumbbell-shaped particle which bridges complex DNA end structures for double-strand break repair
, eLife, Vol: 8, ISSN: 2050-084XCtIP is involved in the resection of broken DNA during the S and G2 phases of the cell cycle for repair by recombination. Acting with the MRN complex, it plays a particularly important role in handling complex DNA end structures by localised nucleolytic processing of DNA termini in preparation for longer range resection. Here we show that human CtIP is a tetrameric protein adopting a dumbbell architecture in which DNA binding domains are connected by long coiled-coils. The protein complex binds two short DNA duplexes with high affinity and bridges DNA molecules in trans. DNA binding is potentiated by dephosphorylation and is not specific for DNA end structures per se. However, the affinity for linear DNA molecules is increased if the DNA terminates with complex structures including forked ssDNA overhangs and nucleoprotein conjugates. This work provides a biochemical and structural basis for the function of CtIP at complex DNA breaks.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.
General enquiries
Section Manager
Brett Onslow
+44 (0)20 7594 3871
Personal Assistant for the Section of Structural Biology
Kasia Pearce
+44 (0)20 7594 2917
Laboratory Manager
Soo Mei Chee