Side-effect of radiation treatment offers new hope for preventing transplant rejection

Side-effect of radiation treatment offers new hope for preventing transplant rejection

Radiation treatment causes changes in immune system which encourage body to accept donated bone marrow - News Release

Imperial College London News Release

Under strict embargo for 22.00 BST / 17.00 EST
Monday 7 May 2007

A radiation treatment currently used to prepare patients for a bone marrow transplant causes changes in the immune system which encourage the body to accept donated bone marrow rather than reject it, according to new research.

The scientists, from Imperial College London, hope that their findings will help the development of new therapies to stop the immune system from rejecting these and other kinds of transplants. The research, which was funded by Cancer Research UK, is published today in the journal PNAS.

Bone marrow transplants are used to enable patients to produce healthy blood cells. However, the host immune system can sometimes attack the donor immune cells from the transplanted bone marrow. Radiation treatment is given before the transplant to create space in the host bone marrow for donor immune cells to inhabit and, in the case of patients with leukaemia, to kill the leukaemia cells.

The new research, which used mouse models, shows that during this process, many of the T cells which mediate the immune response are killed. However, regulatory T cells are able to survive and proliferate, suggesting that they have more resistance to irradiation. Regulatory T cells stop other T cells from attacking the transplanted cells, and so encourage the immune system to accept the transplant.

At present this effect is not sufficiently strong to prevent rejection of bone marrow transplants, but the scientists hope the findings will enable them to develop new ways of curbing rejection.

Professor Francesco Dazzi , from the Kennedy Institute of Rheumatology at Imperial College London, who led the study, said: "Perfect tissue matching is rarely possible and this means the body's immune system recognises transplanted bone marrow as foreign and attacks it. Our new research shows that the regulatory cells which proliferate are able to recognise the foreign tissue and yet stop other immune cells from attacking it. Having uncovered a fundamental process the body uses to control the response to foreign tissue, we can now develop strategies to exploit this effect and control rejection of bone marrow and potentially other organ transplants."

-ends-

For further information please contact:

Laura Gallagher
Senior Press Officer
Imperial College London
e-mail: l.gallagher@imperial.ac.uk
Telephone: +44 (0)207 594 6702 or ext. 46702
Out of hours duty Press Officer: +44 (0)7803 886 248

Notes to editors:

1. “Low-intensity transplant regimens facilitate recruitment of donor-specific regulatory T cells that promote hematopoietic engraftment” Proceedings of the National Academy of Sciences, 7 May 2007

Ling Weng*, Julian Dyson†, and Francesco Dazzi*‡

Departments of *Haematology and †Immunology, Stem Cell Biology Section, Imperial College London

2. About Imperial College London

Rated as the world’s ninth best university in the 2006 Times Higher Education Supplement University Rankings, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 11,500 students and 6,000 staff of the highest international quality.

Innovative research at the College explores the interface between science, medicine, engineering and management and delivers practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

With 62 Fellows of the Royal Society among our current academic staff and distinguished past members of the College including 14 Nobel Laureates and two Fields Medallists, Imperial's contribution to society has been immense. Inventions and innovations include the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of our research for the benefit of all continues today with current focuses including interdisciplinary collaborations to tackle climate change and mathematical modelling to predict and control the spread of infectious diseases.

The College's 100 years of living science will be celebrated throughout 2007 with a range of events to mark the Centenary of the signing of Imperial's founding charter on 8 July 1907.

Website: www.imperial.ac.uk

Article text (excluding photos or graphics) © Imperial College London.

Photos and graphics subject to third party copyright used with permission or © Imperial College London.

Reporter

Press Office

Communications and Public Affairs