Lung inflammation from influenza and other infections could be turned off

Lung inflammation from influenza and other infections could be turned off

New study shows how particular molecules can stop immune system overreacting to flu virus<em> - News Release </em>

Imperial College London News Release

Under strict embargo for
1800 London time / 1300 US Eastern time
Sunday 27 July 2008

A new discovery could lead to treatments which turn off the inflammation in the lungs caused by influenza and other infections, according to a study published today in the journal Nature Immunology.

The symptoms of flu are made worse by the immune system responding in an exaggerated way to the virus

The symptoms of influenza, such as breathlessness, weight loss and fever, are made much worse by the immune system responding in an exaggerated way to the virus, rather than by the virus itself. The virus is often cleared from the body by the time symptoms appear and yet symptoms can last for many days, because the immune system continues to fight the damaged lung.

The immune system is essential for clearing the virus, but it can damage the body when it overreacts if it is not quickly contained. Such overreaction occurs in a number of diseases as well as influenza, such as asthma and inflammatory conditions in the gut.

During influenza infection, the immune system's prolonged response causes the lungs to become inflamed and this can clog the airways and cause difficulty breathing.

The new study, led by researchers from Imperial College London, reveals how the activity of immune cells in the lung is normally kept under control by a receptor known as CD200R, working with another molecule called CD200.

See also:

Imperial College is not responsible for the content of external internet sites

Related news stories:

CD200R is found in high levels in the lungs and the new research shows that it is able to limit the immune system's response and to turn off inflammation once it has started.

Influenza overrides the CD200 molecule and without CD200 to bind to, CD200R cannot work to prevent the immune system from overreacting, so the lungs become inflamed.

In the new study, the researchers gave mice infected with influenza a mimic of CD200, or an antibody to stimulate CD200R, to see if these would enable CD200R to bring the immune system under control and reduce inflammation.

The mice that received treatment had less weight loss than control mice and less inflammation in their airways and lung tissue. The influenza virus was still cleared from the lungs within seven days and so this strategy did not appear to affect the immune system's ability to fight the virus itself.

Following these results in mice, the researchers hope that a therapy could be developed for people which can quickly work with the CD200R receptor and stop the immune system from fighting when it is no longer needed. They believe this would quickly reduce symptoms and reduce the damage that the immune system causes in the lungs and elsewhere.

Professor Tracy Hussell, the lead author of the research from the National Heart and Lung Institute at Imperial College London, said: "The immune system is very sophisticated and much of the time it does a fantastic job of fighting infection, but it has the ability to cause a lot of damage when it overreacts. Our new research is still in its early stages, but these findings suggest that it could be possible to prevent the immune system going into overdrive, and limit the unnecessary damage this can cause."

Dr Robert Snelgrove, a Sir Henry Wellcome Postdoctoral Fellow at Imperial College London and another author of the research, added: "Although flu is just an inconvenience for some people, it can be dangerous and even fatal in the very young and elderly. We hope our research could ultimately help to develop treatments which fight the effects of this sometimes lethal virus."

The researchers hope that in the event of a flu pandemic, such as a pandemic of H5N1 avian flu that had mutated to be transmissible between humans, the new treatment would add to the current arsenal of anti-viral medications and vaccines. One key advantage of this type of therapy is that it would be effective even if the flu virus mutated, because it targets the body's overreaction to the virus rather than the virus itself.

In addition to the possible applications for treating influenza, the researchers also hope their findings could lead to new treatments for other conditions where excessive immunity can be a problem, including other infectious diseases, autoimmune diseases and allergy.

The research was funded by the Medical Research Council, the US National Institutes of Health, the Wellcome Trust, and the European Union.

-ends-

For further information please contact:

Laura Gallagher
Press Officer
Imperial College London
e-mail: l.gallagher@imperial.ac.uk
Telephone: +44 (0)207 594 6702 or ext. 46702
Out of hours duty Press Officer: +44 (0)7803 886 248

Notes to editors:

1. "A critical function for CD200 in lung immune homeostasis and the severity of influenza infection" Nature Immunology, Sunday 27 July 2008 (Advanced Online Publication)

2. The Medical Research Council supports the best scientific research to improve human health. Its work ranges from molecular level science to public health medicine and has led to pioneering discoveries in our understanding of the human body and the diseases which affect us all.

3. The Wellcome Trust is the largest charity in the UK. It funds innovative biomedical research, in the UK and internationally, spending around £600 million each year to support the brightest scientists with the best ideas. The Wellcome Trust supports public debate about biomedical research and its impact on health and wellbeing. www.wellcome.ac.uk

4. Imperial College London - rated the world’s fifth best university in the 2007 Times Higher Education Supplement University Rankings - is a science- based institution with a reputation for excellence in teaching and research that attracts 12,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture. Website: www.imperial.ac.uk

Press office

Press Office
Communications and Public Affairs

Click to expand or contract

Contact details

Email: press.office@imperial.ac.uk