Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Khodaparast S, Sharratt WN, Tyagi G, Dalgliesh RM, Robles ESJ, Cabral JTet al., 2021,

    Pure and mixed aqueous micellar solutions of Sodium Dodecyl sulfate (SDS) and Dimethyldodecyl Amine Oxide (DDAO): Role of temperature and composition

    , JOURNAL OF COLLOID AND INTERFACE SCIENCE, Vol: 582, Pages: 1116-1127, ISSN: 0021-9797
  • Journal article
    Rafique AS, Khodaparast S, Poulos AS, Sharratt WN, Robles ESJ, Cabral JTet al., 2020,

    Micellar structure and transformations in sodium alkylbenzenesulfonate (NaLAS) aqueous solutions: effects of concentration, temperature, and salt

    , Soft Matter, Vol: 16, Pages: 7835-7844, ISSN: 1744-683X

    We investigate the shape, dimensions, and transformation pathways of micelles of linear sodium alkylbenzenesulfonate (NaLAS), a common anionic surfactant, in aqueous solution. Employing Small Angle Neutron Scattering (SANS) and surface tensiometry, we quantify the effects of surfactant concentration (0.6–15 wt%), temperature (5–40 °C) and added salt (≤0.35 M Na2SO4). Spherical micelles form at low NaLAS (≤2.6 wt%) concentration in water, and become elongated with increasing concentration and decreasing temperature. Addition of salt reduces the critical micelle concentration (CMC) and thus promotes the formation of micelles. At fixed NaLAS concentration, salt addition causes spherical micelles to grow into cylindrical micelles, and then multilamellar vesicles (MLVs), which we examine by SANS and cryo-TEM. Above a threshold salt concentration, the MLVs reach diameters of 100 s of nm to few μm, eventually causing precipitation. While the salt concentrations associated with the micelle-to-cylinder transformation increase only slightly with temperature, those required for the cylinder-to-MLV transformation exhibit a pronounced, linear temperature dependence, which we examine in detail. Our study establishes a solution structure map for this model anionic surfactant in water, quantifying the combined roles of concentration, temperature and salt, at practically relevant conditions.

  • Journal article
    Sharratt WN, OConnell R, Rogers SE, Lopez CG, Cabral JTet al., 2020,

    Conformation and phase behavior of sodium carboxymethyl cellulose in the presence of mono- and divalent salts

    , Macromolecules, Vol: 53, Pages: 1451-1463, ISSN: 0024-9297

    We report a small-angle neutron scattering (SANS) study of semidilute aqueous solutions of sodium carboxymethyl cellulose (NaCMC), in the presence of mono- (Na+) and divalent salts (Mg2+, Ca2+, Zn2+, and Ba2+). A degree of substitution of 1.3 is selected to ensure that, in salt-free solution, the polymer is molecularly dissolved. We find that Na+ and Mg2+ salt addition yields H-type phase behavior, while Ca2+, Zn2+, and Ba2+ instead yield a mixed H/L-type phase behavior dependent on the NaCMC concentration (cp), in the decreasing order of the salt concentration required to induce turbidity (at a fixed cp). Charge screening by addition of NaCl induces the disappearance of the characteristic polyelectrolyte correlation peak and eventually yields scattering profiles with a q–1 dependence over nearly 3 decades in the wavenumber q. By fitting a descriptive model to data with excess Na+, we obtain a correlation length ξ′ = 1030 cp–0.72 Å with cp in g L–1. Addition of Mg2+, which does not interact specifically with NaCMC carboxylate groups, yields an analogous screening behavior to that of Na+, albeit at lower salt concentrations, in line with its higher ionic strength. At low salt concentration, addition of specifically interacting Ca2+, Zn2+, and Ba2+ yields a comparatively greater screening of the polyelectrolyte correlation peak, and at concentrations above the phase boundary, results in excess scattering at low-q, compatible with the formation of 20–40 nm clusters. This behavior is interpreted as due to the reduction in charge density along the chain, promoting interchain association and multichain domain formation resulting in visible turbidity. Overall, drawing analogies with NaCMC at a lower degree of substitution, where hydrophobic association takes place, our findings provide a framework to describe the solution structure and phase behavior of NaCMC in salt-free and salt solutions.

  • Journal article
    Aoki Y, Sharratt W, Wang H, O'Connell R, Pellegrino L, Rogers S, Dalgliesh RM, Higgins JS, Cabral JTet al., 2020,

    Effect of tacticity on the phase behavior and demixing of p alpha MSAN/dPMMA blends investigated by SANS

    , Macromolecules, Vol: 53, Pages: 445-457, ISSN: 0024-9297

    We investigate the effect of polymer tacticity on the phase behavior and phase separation of polymer mixtures by small-angle neutron scattering (SANS). Poly(α-methyl styrene-co-acrylonitrile) (PαMSAN) and deuterated poly(methyl methacrylate) (dPMMA) with two degrees of syndiotacticity were selected as a model partially miscible blend, as one of the most highly interacting systems known (defined by the temperature dependence of the blend’s interaction parameter). One-phase (equilibrium) and time-resolved, spinodal demixing experiments were analyzed by de Gennes’ random phase approximation (RPA) and Cahn–Hilliard–Cook (CHC) theory, respectively. The second derivative of the Gibbs free energy of mixing with respect to composition (G″ ≡ ∂2ΔGm/∂ϕ2) and corresponding χ parameter were obtained from both RPA and CHC analysis and found to correlate well across the phase boundary. We find that blends with higher PMMA syndiotacticity exhibit greater miscibility and a steeper G″ temperature dependence by ∼40%. The segment length of dPMMA with higher syndiotacticity was found to be a = 7.4 Å, slightly larger than 6.9 Å reported for lower syndiotacticity dPMMA. Consideration of thermal fluctuations is required for the self-consistent analysis of the nontrivial evolution of the spinodal peak position q* over time, corroborated by CHC model calculations. The temperature dependence of the mobility parameter, M, can be described by a “fast-mode” average of the diffusion coefficients of the blend constituents, except for quenches originating near the glass transition. A minimum demixing length scale of Λ ≈ 40 nm is obtained, in agreement with the theory for deeper quenches, but deviates at shallower quenches, whose origin we discuss. CHC correctly describes demixing length and time scales, except for quenches into the vicinity of the spinodal boundary. Our data demonstrat

  • Book chapter
    Sharratt WN, Cabral JT, 2020,

    Design and fabrication of polymer microparticles and capsules using microfluidics

    , Polymer Colloids: Formation, Characterization and Applications, Editors: Priestley, Prud'homme, Pages: 100-147

    Since the advent of microfluidics in the late 1990s, microfluidic approaches to polymer microparticle and capsule formation have become widespread. They benefit from the precise spatio-temporal control attainable over single and multi-phase channel flows, coupled with a range of solidification strategies, which enable the predictive and reproducible design and manufacture of unprecedented polymeric and composite particles. The control over particle shape, microstructure and architecture, monodispersity and regularity, provides unique chemical, biological, bio-medical and physical opportunities for the complex assembly and functionality of these materials. In this chapter, we summarise recent developments of the use of microfluidics for particle and capsule formation, providing an overview of the main approaches available for their manufacture. We describe key mechanistic and design considerations, including system compatibility and demonstrated capability, seeking to establish limitations and identify unexplored opportunities for these methods. We conclude with an outlook on future directions in terms of scalability, functionality, phase space mapping and commercial and societal impact, of this creative and rapidly evolving soft matter field.

  • Journal article
    O'Connell RA, Porter AE, Higgins JS, Cabral JTet al., 2019,

    Phase behaviour of poly(2, 6-diphenyl-p-phenylene oxide) (PPPO) in mixed solvents

    , Polymer, Vol: 180, ISSN: 0032-3861

    The solution phase behaviour of poly(2, 6-diphenyl-p-phenylene oxide) (PPPO) is investigated by a combination of turbidimetry, infrared spectroscopy, dynamic light scattering and densitometry, combined with calorimetry and X-ray scattering. We select dichloromethane (DCM) and heptane as, respectively, representative good and poor solvents for the polymer. This ternary system results in a miscibility gap which can be utilised for the design and fabrication of PPPO porous materials, membranes and scaffolds via phase inversion. We establish the phase diagram and resolve the kinetic solidification condition arising from the intersection between the coexistence and glass transition curves. PPPO exhibits a high 230 ∘C and is found to crystallise at 336 ∘C, and melt at 423, 445 ∘C with a double endotherm. The kinetics of demixing and (buoyancy-driven) stratification are quantified by optical imaging and the PPPO-rich phase analysed by SAXS/WAXS to resolve both amorphous and crystalline phases. Equipped with this knowledge, we demonstrate the controlled formation of nodular, bicontinuous and cellular morphologies by non-solvent induced demixing.

  • Journal article
    Pont S, Osella S, Smith A, Marsh AV, Li Z, Beljonne D, Cabral JT, Durrant JRet al., 2019,

    Evidence for strong and weak phenyl-C61-butyric acid methyl ester photodimer populations in organic solar cells

    , Chemistry of Materials, Vol: 31, Pages: 6076-6083, ISSN: 0897-4756

    In polymer/fullerene organic solar cells, the photochemical dimerization of phenyl-C61-butyric acid methyl ester (PCBM) was reported to have either a beneficial or a detrimental effect on device performance and stability. In this work, we investigate the behavior of such dimers by measuring the temperature dependence of the kinetics of PCBM de-dimerization as a function of prior light intensity and duration. Our data reveal the presence of both “weakly” and “strongly” bound dimers, with higher light intensities preferentially generating the latter. DFT simulations corroborate our experimental findings and suggest a distribution of dimer binding energies, correlated with the orientation of the fullerene tail with respect to the dimer bonds on the cage. These results provide a framework to rationalize the double-edged effects of PCBM dimerization on the stability of organic solar cells.

  • Journal article
    Udoh CE, Garbin V, Cabral JT, 2019,

    Polymer nanocomposite capsules formed by droplet extraction: spontaneous stratification and tailored dissolution

    , Soft Matter, Vol: 15, Pages: 5287-5295, ISSN: 1744-683X

    We report the formation of polymeric and nanocomposite capsules via droplet solvent extraction, focusing on the interplay between solvent exchange and removal, demixing and directional solidification kinetics. We investigate a model system of sodium poly(styrene sulfonate), NaPSS and silica nanoparticles in aqueous solution, whose phase behaviour is experimentally measured, and examine a series of selective extraction solvents (toluene, butyl acetate, ethyl acetate and methyl ethyl ketone), ranging from 0.04 to 11% v/v water solubility. Tuning the rate of solvent exchange is shown to provide an effective means of decoupling demixing and solidification timescales, and thereby tunes the internal microstructure of the capsule, including hollow, microporous, core–shell, and bicontinuous morphologies. In turn, these determine the capsule dissolution mechanism and kinetics, ranging from single to pulsed release profiles of nanoparticle clusters (at intermediate solubilities), to minimal dissolution (at either extremes). These findings provide facile design and assembly strategies for functional capsules with time-varying release profiles.

  • Journal article
    Khodaparast S, Sharratt W, Wang H, Robles ESJ, Dalgliesh R, Cabral JTet al., 2019,

    Spontaneous formation of multilamellar vesicles from aqueous micellar solutions of sodium linear alkylbenzene sulfonate (NaLAS)

    , Journal of Colloid and Interface Science, Vol: 546, Pages: 221-230, ISSN: 0021-9797

    We report the spontaneous formation of multilamellar vesicles (MLVs) from low concentration (<30 wt%) aqueous micellar solutions of sodium linear alkylbenezene sulfonate (NaLAS) upon cooling, employing a combination of optical microscopy (OM), Small Angle Neutron Scattering (SANS), and Cryo-TEM. Upon cooling, MLVs grow from, and coexist with, the surfactant micelles, attaining diameters ranging from hundreds of nanometers to a few micrometers depending on the cooling rate, whilst the d-spacing of internal lamellae remains unchanged, at 3 nm. While microscale fluid and flow properties of the mixed MLVs and micellar phase depend on rate of cooling, the corresponding nanoscale structure of the surfactant aggregates, resolved by time-resolved SANS, remains unchanged. Our data indicate that the mixed MLV and micellar phases are in thermodynamic equilibrium with a fixed relative volume fraction determined by temperature and total surfactant concentration. Under flow, MLVs aggregate and consequently migrate away from the channel walls, thus reduce the overall hydrodynamic resistance. Our findings demonstrate that the molecular and mesoscopic structure of ubiquitous, low concentration NaLAS solutions, and in turn their flow properties, are dramatically influenced by temperature variation about ambient conditions.

  • Journal article
    Pont S, Durrant JR, Cabral JT, 2019,

    Dynamic PCBM:dimer population in solar cells under light and temperature fluctuations

    , Advanced Energy Materials, Vol: 9, ISSN: 1614-6832

    Photoinduced dimerization of phenyl-C61-butyric acid methyl ester (PCBM) has a significant impact on the stability of polymer:PCBM organic solar cells (OSCs). This reaction is reversible, as dimers can be thermally decomposed at sufficiently elevated temperatures and both photodimerization and decomposition are temperature dependent. In operando conditions of OSCs evidently involve exposure to both light and heat, following periodic diurnal and seasonal profiles. In this work, the kinetics of dimer formation and decomposition are examined and quantified as a function of temperature, light intensity, blend composition, and time. The activation energy for photodimerization is estimated to be 0.021(3) eV, considerably smaller than that for decomposition (0.96 eV). The findings are benchmarked with a variety of conjugated polymer matrices to propose a descriptive dynamic model of PCBM:dimer population in OSCs, and a framework is proposed to rationalize its interplay with morphology evolution and charge quenching. The model and parameters enable the prediction of the dynamic and long-term PCBM:dimer populations, under variable temperature and light conditions, which impact the morphological stability of OSCs.

  • Journal article
    Khan H, Seddon JM, Law RV, Brooks NJ, Robles E, Cabral JT, Ces Oet al., 2019,

    Effect of glycerol with sodium chloride on the Krafft point of sodium dodecyl sulfate using surface tension

    , Journal of Colloid and Interface Science, Vol: 538, Pages: 75-82, ISSN: 0021-9797

    The effect of glycerol with sodium chloride (NaCl) on the phase behaviour of sodium dodecyl sulfate (SDS) near the Krafft point was studied by surface tension analysis using the pendant drop method. The critical micelle concentration (CMC) and Krafft Temperature (TK) of SDS in water: glycerol mixtures, across the full composition range, and in NaCl solutions within 0.005–0.1 M were obtained. The pendant drop method successfully allowed us to determine the Krafft point of SDS in high glycerol systems where other traditional methods (e.g. conductivity) have been ineffective. Overall the addition of glycerol increases the CMC and the TK, thus shifting the Krafft point of SDS to higher temperatures (increasing crystallisation temperatures) and higher SDS content in the presence of glycerol, which is interpreted as a result of the reduction in solvent polarity which opposes micellization. The addition of NaCl to the SDS – water-glycerol systems brings the CMC back down, while having no significant effect on the TK. Our results establish a robust route for tuning the Krafft point of model surfactant SDS by adjusting solvent quality and salt content.

  • Journal article
    Aoki Y, Wang H, Sharratt W, Dalgliesh R, Higgins J, Cabral Jet al., 2019,

    Small angle neutron scattering study of the thermodynamics of highly interacting PαMSAN/dPMMA blends

    , Macromolecules, Vol: 52, Pages: 1112-1124, ISSN: 0024-9297

    Poly(methyl methacrylate) (PMMA) and poly(α-methyl styrene-co-acrylonitrile) (PαMSAN) form partially miscible blends with lower critical solution temperature (LCST) behaviour. We revisit this system using small angle neutron scattering (SANS), examining the effect of molecular weight (Mw) of deuterated PMMA (dPMMA), blend composition (φ) and temperature (T) in the homogeneous region. All data are well described by the Random Phase Approximation (RPA) theory, enabling us to determine thermodynamic and structural parameters, including the correlation length ξ, G00 (the second derivative of the free energy of mixing with respect to composition), and the statistical segment length a of each component. Phase boundaries are computed by extrapolation of G00 with temperature, to yield the spinodal, and inspection of Kratky plots to yield the binodal. For PαMSAN, a is determined to be 10.1±0.4 ˚A. Unsurprisingly, this system deviates strongly from Flory-Huggins expectations, exhibiting a minimal Mw dependence of the phase boundaries and φ-dependence of effective interaction parameter (˜χ). Comparison of G00 with values for other blend systems places PαMSAN/dPMMA in a class of highly interacting blends, expected from Cahn-Hilliard theory to yield small initial phase sizes upon spinodal demixing. This is confirmed experimentally, with an illustrative temperature jump resulting in an initial phase size of ' 30 nm.

  • Journal article
    Beber A, Taveneau C, Nania M, Tsai F-C, Di Cicco A, Bassereau P, Levy D, Cabral JT, Isambert H, Mangenot S, Bertin Aet al., 2019,

    Membrane reshaping by micrometric curvature sensitive septin filaments

    , Nature Communications, Vol: 10, ISSN: 2041-1723

    Septins are cytoskeletal filaments that assemble at the inner face of the plasma membrane. They are localized at constriction sites and impact membrane remodeling. We report in vitro tools to examine how yeast septins behave on curved and deformable membranes. Septins reshape the membranes of Giant Unilamellar Vesicles with the formation of periodic spikes, while flattening smaller vesicles. We show that membrane deformations are associated to preferential arrangement of septin filaments on specific curvatures. When binding to bilayers supported on custom-designed periodic wavy patterns displaying positive and negative micrometric radii of curvatures, septin filaments remain straight and perpendicular to the curvature of the convex parts, while bending negatively to follow concave geometries. Based on these results, we propose a theoretical model that describes the deformations and micrometric curvature sensitivity observed in vitro. The model captures the reorganizations of septin filaments throughout cytokinesis in vivo, providing mechanistic insights into cell division.

  • Conference paper
    Wang H, Aoki Y, Sharratt W, Rogers S, Dalgliesh R, Higgins J, Cabral Jet al., 2019,

    SANS study of the thermodynamics and demixing of highly interacting PaMSAN/dPMMA blends

    , APS March Meeting 2019
  • Journal article
    Miller RM, Cabral J, Robles E, Brooks N, Ces Oet al., 2018,

    Crystallisation of sodium dodecyl sulfate–water micellar solutions with structurally similar additives: counterion variation

    , CrystEngComm, Vol: 20, Pages: 6834-6843, ISSN: 1466-8033

    The effects of a series of structurally similar sodium dodecyl sulfate (SDS) additives on the crystallisation of SDS–water micellar solutions were investigated using a combination of differential scanning calorimetry, dynamic light scattering, optical microscopy and inductively coupled plasma optical emission spectroscopy. Seven different counterions were chosen from groups 1 and 2 of the periodic table to replace the sodium on SDS: LDS, (SDS), KDS, RbDS, CsDS, Mg(DS)2, Ca(DS)2 and Sr(DS)2. Two representative temperature profileswere employed – linear cooling ramps at rate of 0.5 °C min−1 to determine near-equilibrium kinetics and transitions and isothermal holds at 6 °C to elucidate morphological changes. Crystallisation of the reference solution 20% SDS–H2O with 0.25, 1.0 and 2.5% additive was generally promoted or inhibited even at the lowest concentrations. Melting points however remained largely unchanged, suggesting that the additives predominantly had a kinetic rather than thermodynamic effect. ICP-OES measurements for the solutions containing 1% additive indicated that most of the additives were integrated into the SDS crystals which was reflected by morphological changes, including the formation of hexagonal and oval shaped crystals. Our results both quantify and provide a morphological insight into the effect of a series of additives on the crystallisation of micellar SDS solutions, which can readily form due to preferential Na exchange.

  • Journal article
    Pont S, Foglia F, Higgins A, Durrant JR, Cabral JPet al., 2018,

    Stability of polymer:PCBM thin films under competitive illumination and thermal stress

    , Advanced Functional Materials, Vol: 28, ISSN: 1616-301X

    The combined effects of illumination and thermal annealing on the morphological stability and photodimerization in polymer/fullerene thin films are examined. While illumination is known to cause fullerene dimerization and thermal stress their dedimerization, the operation of solar cells involves exposure to both. The competitive outcome of these factors with blends of phenyl‐C61‐butyric acid methyl ester (PCBM) and polystyrene (PS), supported on PEDOT:PSS is quantified. UV–vis spectroscopy is employed to quantify dimerization, time‐resolved neutron reflectivity to resolve the vertical composition stratification, and atomic force microscopy for demixing and coarsening in thin films. At the conventional thermal stress test temperature of 85 °C (and even up to the PS glass transition), photodimerization dominates, resulting in relative morphological stability. Prior illumination is found to result in improved stability upon high temperature annealing, compatible with the need for dedimerization to occur prior to structural relaxation. Modeling of the PCBM surface segregation data suggests that only PCBM monomers are able to diffuse and that illumination provides an effective means to control dimer population, and thus immobile fullerene fraction, in the timescales probed. The results provide a framework for understanding of the stability of organic solar cells under operating conditions.

  • Journal article
    Sharratt W, Brooker A, Robles E, Cabral JPet al., 2018,

    Microfluidic solvent extraction of poly (vinyl alcohol) droplets: effect of polymer structure on particle and capsule formation

    , Soft Matter, Vol: 14, Pages: 4453-4463, ISSN: 1744-683X

    We investigate the formation of poly(vinyl alcohol) microparticles by the selective extraction of aqueous polymer solution droplets, templated by microfluidics and subsequently immersed in a non-solvent bath. The role of polymer molecular mass (18–105 kg mol−1), degree of hydrolysis (88–99%) and thus solubility, and initial solution concentration (0.01–10% w/w) are quantified. Monodisperse droplets with radii ranging from 50 to 500 μm were produced at a flow-focusing junction with carrier phase hexadecane and extracted into ethyl acetate. Solvent exchange and extraction result in droplet shrinkage, demixing, coarsening and phase-inversion, yielding polymer microparticles with well-defined dimensions and internal microstructure. Polymer concentration, varied from below the overlap concentration c* to above the concentrated crossover c**, as estimated by viscosity measurements, was found to have the largest impact on the final particle size and extraction timescale, while polymer mass and hydrolysis played a secondary role. These results are consistent with the observation that the average polymer concentration upon solidification greatly exceeds c**, and that the internal microparticle porosity is largely unchanged. However, reducing the initial polymer concentration to well below c* (approximately 100×) and increasing droplet size yields thin-walled (100's of nm) capsules which controllably crumple upon extraction. The symmetry of the process can be readily broken by imposing extraction conditions at an impermeable surface, yielding large, buckled, cavity morphologies. Based on these results, we establish robust design criteria for polymer capsules and particles, demonstrated here for poly(vinyl alcohol), with well-defined shape, dimensions and internal microstructure.

  • Journal article
    Gonzalez Lopez C, Watanabe T, Adamo M, Martel A, Porcar L, Cabral JPet al., 2018,

    Microfluidic devices for small angle neutron scattering

    , Journal of Applied Crystallography, Vol: 51, Pages: 570-583, ISSN: 0021-8898

    A comparative examination is presented of materials and approaches for the fabrication of microfluidic devices for small-angle neutron scattering (SANS). Representative inorganic glasses, metals, and polymer materials and devices are evaluated under typical SANS configurations. Performance criteria include neutron absorption, scattering background and activation, as well as spatial resolution, chemical compatibility and pressure resistance, and also cost, durability and manufacturability. Closed-face polymer photolithography between boron-free glass (or quartz) plates emerges as an attractive approach for rapidly prototyped microfluidic SANS devices, with transmissions up to ∼98% and background similar to a standard liquid cell (I ≃ 10−3 cm−1). For applications requiring higher durability and/or chemical, thermal and pressure resistance, sintered or etched boron-free glass and silicon devices offer superior performance, at the expense of various fabrication requirements, and are increasingly available commercially.

  • Journal article
    Cabral JP, Higgins JS, 2018,

    Spinodal nanostructures in polymer blends: on the validity of the Cahn-Hilliard length scale prediction

    , Progress in Polymer Science, Vol: 81, Pages: 1-21, ISSN: 0079-6700

    Spinodal decomposition of partially miscible polymer blends has the potential to generate well-defined polymeric nanostructured materials, with precise control of length scale and connectivity, and applications ranging from membranes and scaffolds to photovoltaics. In this review, we briefly summarize the theoretical basis for describing spinodal decomposition in binary polymer blends, and the parameters that determine the accessible demixing length scales and the timescales over which they develop. We then examine experimentally the validity of the classical Cahn-Hilliard (CH) theory prediction for the initial spinodal length scale, where G′′ is the second derivative of the free energy of mixing with respect to composition, and k is the ‘square gradient’ parameter, accounting for changes in free energy arising from concentration gradients. Benefitting from the perspective of over 40 years of neutron and light scattering data, and noting (remaining) misconceptions in the literature when analyzing phase separation, we examine a large collection of Λ measurements, and independent -G′′(T) and k experimental estimates. Overall, we find the CH prediction for Λ to be remarkably accurate for all blends and self-consistent conditions examined. We then summarize design considerations for generating polymeric materials via spinodal decomposition, bound by thermodynamics of available polymer systems, coarsening kinetics governed by rheology, as well as by engineering constraints. The fulfillment of the potential of this approach in the development of real functional materials demands, however, improved thermodynamic theories for polymer blends, able to quantitatively predict G′′(T) and k in terms of molecular structure and interactions.

  • Journal article
    Gonzalez Lopez C, Colby R, Cabral JP, 2018,

    Electrostatic and hydrophobic interactions in NaCMC aqueous solutions: effect of degree of substitution

    , Macromolecules, Vol: 51, Pages: 3165-3175, ISSN: 0024-9297

    The rheology of water soluble polyelectrolytesat intermediate and high concentrations is controlled byentanglements, hydrophobic and electrostatic interac-tions, whose influence is difficult to isolate. We investi-gate the rheology of semidilute solutions of sodium car-boxymethyl cellulose (NaCMC) with molecular weightMw'2.5×105g/mol and varying degree of substi-tution (D.S.) as a function of polymer concentration invarious solvent media: salt-free water (long ranged elec-trostatic interactions), 0.5M aqueous NaCl (screenedelectrostatics) and 0.5M aqueous NaOH (screened elec-trostatics, diminished hydrophobic interactions) in or-der to selectively probe the different interactions. De-creasing D.S. is found to decrease solubility and inducepartial aggregation and eventual gelation. In salt-freeand 0.5M NaCl solution, NaCMC with D.S.'1.2 ex-hibits hydrophilic polyelectrolyte and neutral polymerin good solvent behaviour respectively. Decreasing'0.7-0.8 leads to hydrophobic behaviour in bothsolvents, becoming weak gels at high concentrations. In0.5M NaOH (pH = 13.5) the viscosities of samples withdifferent D.S. become identical when plotted againstthe overlap parameter, which we interpret as result-ing from the solubilisation of unsubstituted celluloseblocks. Small angle neutron scattering (SANS) data in-dicate that the polymer conformation is not stronglyaffected by hydrophobic interactions. By varying D.S.,ionic strength and pH, we demonstrate the tuning ofNaCMC-solvent interactions, controlling separately the electrostatic and hydrophobic effects on the solutionrheology.

  • Conference paper
    Vitale A, Hennessy M, Matar O, Cabral Jet al., 2018,

    Controlling the evolution of frontal photopolymerization waves for 3D polymeric patterning

    , 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, ISSN: 0065-7727
  • Journal article
    Adamo M, Poulos AS, G Lopez C, Martel A, Porcar L, Cabral JTet al., 2018,

    Droplet microfluidic SANS

    , Soft Matter, Vol: 14, Pages: 1759-1770, ISSN: 1744-683X

    The coupling of droplet microfluidics and Small Angle Neutron Scattering (SANS) is demonstrated with a range of model systems: isotopic solvent (H2O/D2O) mixtures, surfactant (sodium dodecyl sulfate, SDS) solutions and colloidal (silica) suspensions. Several droplet carrier phases are evaluated and fluorinated oil emerges as a suitable fluid with minimal neutron background scattering (commensurate with air), and excellent interfacial properties. The combined effects of flow dispersion and compositional averaging caused by the neutron beam footprint are evaluated in both continuous and droplet flows and an operational window is established. Systematic droplet-SANS dilution measurements of colloidal silica suspensions enable unprecedented quantification of form and structure factors, osmotic compressibility, enhanced by constrained global data fits. Contrast variation measurements with over 100 data points are readily carried out in 10-20 min timescales, and validated for colloidal silica of two sizes, in both continuous and droplet flows. While droplet microfluidics is established as an attractive platform for SANS, the compositional averaging imposed by large (∼1 cm) beam footprints can, under certain circumstances, make single phase, continuous flow a preferable option for low scattering systems. We propose simple guidelines to assess the suitability of either approach based on well-defined system parameters.

  • Journal article
    Udoh C, CABRAL J, Garbin V, 2017,

    Nanocomposite capsules with directional, pulsed nanoparticle release

    , Science Advances, Vol: 3, ISSN: 2375-2548

    The precise spatiotemporal delivery of nanoparticles from polymeric capsules is required for applications ranging from medicine to materials science. These capsules derive key performance aspects from their overall shape and dimensions, porosity, and internal microstructure. To this effect, microfluidics provide an exceptional platform for emulsification and subsequent capsule formation. However, facile and robust approaches for nanocomposite capsule fabrication, exhibiting triggered nanoparticle release, remain elusive because of the complex coupling of polymer-nanoparticle phase behavior, diffusion, phase inversion, and directional solidification. We investigate a model system of polyelectrolyte sodium poly(styrene sulfonate) and 22-nm colloidal silica and demonstrate a robust capsule morphology diagram, achieving a range of internal morphologies, including nucleated and bicontinuous microstructures, as well as isotropic and non-isotropic external shapes. Upon dissolution in water, we find that capsules formed with either neat polymers or neat nanoparticles dissolve rapidly and isotropically, whereas bicontinuous, hierarchical, composite capsules dissolve via directional pulses of nanoparticle clusters without disrupting the scaffold, with time scales tunable from seconds to hours. The versatility, facile assembly, and response of these nanocomposite capsules thus show great promise in precision delivery.

  • Journal article
    Hennessy M, Vitale A, Matar O, Cabral JTet al., 2017,

    Monomer diffusion into static and evolving polymer networks during frontal photopolymerisation

    , Soft Matter, Vol: 13, Pages: 9199-9210, ISSN: 1744-683X

    Frontal photopolymerisation (FPP) is a directional solidification process that converts monomer-rich liquid into crosslinked polymer solid by light exposure and finds applications ranging from lithography to 3D printing. Inherent to this process is the creation of an evolving polymer network that is exposed to a monomer bath. A combined theoretical and experimental investigation is performed to determine the conditions under which monomer from this bath can diffuse into the propagating polymer network and cause it to swell. First, the growth and swelling processes are decoupled by immersing pre-made polymer networks into monomer baths held at various temperatures. The experimental measurements of the network thickness are found to be in good agreement with theoretical predictions obtained from a nonlinear poroelastic model. FPP propagation experiments are then carried out under conditions that lead to swelling. Unexpectedly, for a fixed exposure time, swelling is found to increase with incident light intensity. The experimental data is well described by a novel FPP model accounting for mass transport and the mechanical response of the polymer network, providing key insights into how monomer diffusion affects the conversion profile of the polymer solid and the stresses that are generated during its growth. The predictive capability of the model will enable the fabrication of gradient materials with tuned mechanical properties and controlled stress development.

  • Journal article
    Poulos AS, Jones CS, Cabral JT, 2017,

    Dissolution of anionic surfactant mesophases

    , Soft Matter, Vol: 13, Pages: 5332-5340, ISSN: 1744-683X

    Linear and circular solvent penetration experiments are used to study the dissolution of anionic SLE3S surfactant mesophases in water. We show that a lamellar (Lα) phase in contact with water will transit through a series of cubic, hexagonal, and micellar phase bands with sharp interfaces identified from their optical textures. In both linear and circular geometries, the kinetics of front propagation and eventual dissolution are well described by diffusive penetration of water, and a simple model applies to both geometries, with a different effective diffusion coefficient for water Df as the only fitting parameter. Finally, we show a surprising variation of dissolution rates with initial surfactant concentration that can be well explained by assuming that the driving force for solvent penetration is the osmotic pressure difference between neat water and the aqueous fraction of the mesophase that is highly concentrated in surfactant counterions.

  • Journal article
    Bedoya-Lora FE, Hankin A, Holmes-Gentle I, Regoutz A, Nania M, Payne DJ, Cabral JT, Kelsall GHet al., 2017,

    Effects of low temperature annealing on the photo-electrochemical performance o tin-doped hematite photo-anodes

    , Electrochimica Acta, Vol: 251, Pages: 1-11, ISSN: 0013-4686

    The effects of post-deposition annealing at 400 and 500 °C on the photo-electrochemical performance of SnIV-doped α-Fe2O3 photo-anodes are reported. Samples were fabricated by spray pyrolysis on fluorine-doped tin oxide (FTO) and on titanium substrates. Photo-electrochemical, morphological and optical properties were determined to explain the shift in photocurrent densities to lower electrode potentials and the decrease of maximum photocurrent densities for alkaline water oxidation after annealing. Annealing at 400 and 500 °C in air did not affect significantly the morphology, crystallinity, optical absorption or spatial distributions of oxygen vacancy concentrations. However, XPS data showed a redistribution of SnIV near SnIV-doped α-Fe2O3 | 1 M NaOH interfaces after annealing. Thus, electron-hole recombination rates at photo-anode surfaces decreased after annealing, shifting photocurrents to lower electrode potentials. Conversely, depletion of SnIV in the α-Fe2O3 bulk could increase recombination rates therein and decrease photon absorption near 550 nm, due to an increased dopant concentration in the semiconductor depletion layer. This accounted for the decrease of maximum photocurrents when electron-hole recombination rates were suppressed using HO2− ions as a hole scavenger. The flat band potential of SnIV-doped α-Fe2O3 remained relatively constant at ca. 0.7 V vs. RHE, irrespective of annealing conditions.

  • Journal article
    Foglia F, Karan S, Nania M, Jiang Z, Porter AE, Barker R, Livingston AG, Cabral JTet al., 2017,

    Neutron Reflectivity and Performance of Polyamide Nanofilms for Water Desalination


    The structure and hydration of polyamide (PA) membranes are investigated with a combination of neutron and X-ray reflectivity, and their performance is benchmarked in reverse osmosis water desalination. PA membranes are synthesized by the interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC), varying systematically reaction time, concentration, and stoichiometry, to yield large-area exceptionally planar films of ≈10 nm thickness. Reflectivity is employed to precisely determine membrane thickness and roughness, as well as the (TMC/MPD) concentration profile, and response to hydration in the vapor phase. PA film thickness is found to increase linearly with reaction time, albeit with a nonzero intercept, and the composition cross-sectional profile is found to be uniform, at the conditions investigated. Vapor hydration with H2O and D2O from 0 to 100% relative humidity results in considerable swelling (up to 20%), but also yields uniform cross-sectional profiles. The resulting film thickness is found to be predominantly set by the MPD concentration, while TMC regulates water uptake. A favorable correlation is found between higher swelling and water uptake with permeance. The data provide quantitative insight into the film formation mechanisms and correlate reaction conditions, cross-sectional nanostructure, and performance of the PA active layer in RO membranes for desalination.

  • Journal article
    Purnama AR, Hennessy MG, Vitale A, Cabral JTet al., 2017,

    Cover Image, Volume 66, Issue 6

    , Polymer International, Vol: 66, Pages: i-i, ISSN: 0959-8103
  • Journal article
    Li Y, Klosowski MM, McGilvery CM, Porter AE, Livingston AG, Cabral JTet al., 2017,

    Probing flow activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers

    , JOURNAL OF MEMBRANE SCIENCE, Vol: 534, Pages: 9-17, ISSN: 0376-7388

    We investigate the flow activity of the nanostructured polyamide layer in reverse osmosis (RO) membrane, using gold nanoparticle (NP) tracers of 1–40 nm diameter. Following a detailed structural examination of a commercial SW30RH membrane selected for this study, NP solutions were infiltrated from either the polyamide front or the polysulfone support side. The permeate was then analyzed spectroscopically while the entrapment of NPs within the membrane was mapped by high resolution electron microscopy. Results show that back-filtered NPs exhibited a fractionated distribution according to size: 1 nm nanoparticles permeate across the polyamide-polysulfone interface reaching the interior of the polyamide corrugations, while the larger ones (>10 nm) are retained within the polysulfone and gradually arrested at approximately 100 nm below the polyamide-polysulfone interface. Intermediate-sized 5 nm nanoparticles reached the undulating folds just below the polyamide layer. Permeation pathways across polyamide layer appear to exclude all tracers above 1 nm, which become selectively distributed across the polyamide layer: positively charged NPs label the outer surface of the polyamide film (expected to be carboxylate-rich), while negatively charged particles are uniformly distributed within the layer. Diafiltration measurements quantify the transient kinetics of NP retention and permeation. Overall, our results establish the flow activity of the polyamide nodular surface and provide estimates for the dimensions of permeation pathways.

  • Journal article
    Adamo M, Poulos AS, Miller RM, Lopez CG, Martel A, Porcar L, Cabral JTet al., 2017,

    Rapid contrast matching by microfluidic SANS

    , Lab on a Chip, Vol: 17, Pages: 1559-1569, ISSN: 1473-0189

    We report a microfluidic approach to perform small angle neutron scattering (SANS) measurements of contrast variation and matching, extensively employed in soft and biological matter research. We integrate a low scattering background microfluidic mixer and serpentine channel in a SANS beamline to yield a single phase, continuous flow, reconfigurable liquid cell. By contrast with conventional, sequential measurements of discrete (typically 4–6) solutions of varying isotopic solvent composition, our approach continually varies solution composition during SANS acquisition. We experimentally and computationally determine the effects of flow dispersion and neutron beam overillumination of microchannels in terms of the composition resolution and precision. The approach is demonstrated with model systems: H2O/D2O mixtures, a surfactant (sodium dodecyl sulfate, SDS), a triblock copolymer (pluronic F127), and silica nanoparticles (Ludox) in isotopic aqueous mixtures. The system is able to zoom into a composition window to refine contrast matching conditions, and robustly resolve solute structure and form factors by simultaneous fitting of scattering data with continuously varying contrast. We conclude by benchmarking our microflow-SANS with the discrete approach, in terms of volume required, composition resolution and (preparation and measurement) time required, proposing a leap forward in equilibrium, liquid solution phase mapping and contrast variation by SANS.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=667&limit=30&respub-action=search.html Current Millis: 1611570717186 Current Time: Mon Jan 25 10:31:57 GMT 2021