Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Hunt ESE, Felice RN, Tobias JA, Goswami Aet al., 2023,

    Ecological and life-history drivers of avian skull evolution

    , EVOLUTION, Vol: 77, Pages: 1720-1729, ISSN: 0014-3820
  • Other
    Mengoli G, Harrison SP, Prentice IC, 2023,

    Supplementary material to "A global function of climatic aridity accounts for soil moisture stress on carbon assimilation"

  • Journal article
    Tan C, Trew J, Peacock T, Mok KY, Hart C, Lau K, Ni D, Orme CDL, Ransome E, Pearse W, Coleman C, Bailey D, Thakur N, Quantrill J, Sukhova K, Richard D, Kahane L, Woodward G, Bell T, Worledge L, Nunez-Mino J, Barclay W, van Dorp L, Balloux F, Savolainen Vet al., 2023,

    Genomic screening of 16 UK native bat species through conservationist networks uncovers coronaviruses with zoonotic potential

    , Nature Communications, Vol: 14, Pages: 1-13, ISSN: 2041-1723

    There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine (two novel) complete genomes across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk is unknown and warrants closer surveillance.

  • Journal article
    Tobias JA, 2023,

    First record of Campina Thrush Turdus arthuri for Bolivia

    , Bulletin of the British Ornithologists' Club, Vol: 143, Pages: 260-264, ISSN: 0007-1595

    An adult thrush trapped in a mist-net near Guayaramerin, dpto. Beni, Bolivia, in April 2005, was initially identified as Black-billed Thrush Turdus ignobilis although several subtle plumage features appeared to differ from the expected race T. i. debilis. These features match those of Campina Thrush T. arthuri, a cryptic species subsequently split from Black-billed Thrush based on molecular evidence, and now known to occur widely in shrubby thickets and stunted campina forest across much of Amazonia. This record extends the known distribution of T. arthuri south-west from the nearest known localities in Amazonas and Rondônia, Brazil. T. arthuri is presumably resident in north-west dpto. Beni in suitable habitat, and potentially occurs elsewhere in Bolivia from Pando to eastern Santa Cruz in similar campina-like habitats associated with weathered outcrops of the Brazilian Shield.

  • Journal article
    Germain RR, Feng S, Chen G, Graves GR, Tobias JA, Rahbek C, Lei F, Fjeldsa J, Hosner PA, Gilbert MTP, Zhang G, Nogues-Bravo Det al., 2023,

    Species-specific traits mediate avian demographic responses under past climate change

    , NATURE ECOLOGY & EVOLUTION, Vol: 7, Pages: 862-872, ISSN: 2397-334X
  • Journal article
    Kenna D, Graystock P, Gill R, 2023,

    Toxic temperatures: bee behaviours exhibit divergent pesticide toxicity relationships with warming

    , Global Change Biology, Vol: 29, Pages: 2981-2998, ISSN: 1354-1013

    Climate change and agricultural intensification are exposing insect pollinators to temperature extremes and increasing pesticide usage. Yet, we lack good quantification of how temperature modulates the sublethal effects of pesticides on behaviours vital for fitness and pollination performance. Consequently, we are uncertain if warming decreases or increases the severity of different pesticide impacts, and whether separate behaviours vary in the direction of response. Quantifying these interactive effects is vital in forecasting pesticide risk across climate regions and informing pesticide application strategies and pollinator conservation. This multi-stressor study investigated the responses of six functional behaviours of bumblebees when exposed to either a neonicotinoid (imidacloprid) or a sulfoximine (sulfoxaflor) across a standardised low, mid, and high temperature. We found the neonicotinoid had a significant effect on five of the six behaviours, with a greater effect at the lower temperature(s) when measuring responsiveness, the likelihood of movement, walking rate, and food consumption rate. In contrast, the neonicotinoid had a greater impact on flight distance at the higher temperature. Our findings show that different organismal functions can exhibit divergent thermal responses, with some pesticide-affected behaviours showing greater impact as temperatures dropped, and others as temperatures rose. We must therefore account for environmental context when determining pesticide risk. Moreover, we found evidence of synergistic effects, with just a 3°C increase causing a sudden drop in flight performance, despite seeing no effect of pesticide at the two lower temperatures. Our findings highlight the importance of multi-stressor studies to quantify threats to insects, which will help to improve dynamic evaluations of population tipping points and spatiotemporal risks to biodiversity across different climate regions.

  • Journal article
    Matthews TJ, Wayman JP, Whittaker RJ, Cardoso P, Hume JP, Sayol F, Proios K, Martin TE, Baiser B, Borges PAV, Kubota Y, dos Anjos L, Tobias JA, Soares FC, Si X, Ding P, Mendenhall CD, Sin YCK, Rheindt FE, Triantis KA, Guilhaumon F, Watson DM, Brotons L, Battisti C, Chu O, Rigal Fet al., 2023,

    A global analysis of avian island diversity-area relationships in the Anthropocene

    , ECOLOGY LETTERS, Vol: 26, Pages: 965-982, ISSN: 1461-023X
  • Journal article
    Tan S, Wang H, Prentice IC, Yang K, Nóbrega RLB, Liu X, Wang Y, Yang Yet al., 2023,

    Towards a universal evapotranspiration model based on optimality principles

    , Agricultural and Forest Meteorology, Vol: 336, Pages: 1-11, ISSN: 0168-1923

    Natural resource management requires knowledge of terrestrial evapotranspiration (ET). Most existing numeric models for ET include multiple plant- or ecosystem-type specific parameters that require calibration. This is a significant source of uncertainty under changing environmental conditions. A novel ET model with no type−specific parameters was developed recently. Based on the coupling the diffusion (via stomata) of water and carbon dioxide (CO2), this model predicts canopy conductance based on environmental conditions using eco-evolutionary optimality principles that apply to all plant types. Transpiration (T) and ET are calculated from canopy conductance using the Penman-Monteith equation for T and a universal empirical function for the T:ET ratio. Here, the model is systematically evaluated at globally distributed eddy-covariance sites and river basins. Site-scale modelled ET agrees well with flux data (r = 0.81, root mean square error = 0.73 mm day–1 in 23,623 records) and modelled ET in 39 river basins agrees well with the ET estimated by monthly water budget using two runoff datasets (r = 0.62 and 0.66, respectively). Modelled global patterns of ET are consistent with existing global ET products. The model's universality, parsimony and accuracy combine to indicate a broad potential field of application in resource management and global change science.

  • Journal article
    Weeks TL, Betts MG, Pfeifer M, Wolf C, Banks-Leite C, Barbaro L, Barlow J, Cerezo A, Kennedy CM, Kormann UG, Marsh CJ, Olivier PI, Phalan BT, Possingham HP, Wood EM, Tobias JAet al., 2023,

    Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds

    , Nature Ecology and Evolution, Vol: 7, Pages: 1079-1091, ISSN: 2397-334X

    Species sensitivity to forest fragmentation varies latitudinally, peaking in the tropics. A prominent explanation for this pattern is that historical landscape disturbance at higher latitudes has removed fragmentation-sensitive species or promoted the evolution of more resilient survivors. However, it is unclear whether this so-called extinction filter is the dominant driver of geographic variation in fragmentation sensitivity, particularly because climatic factors may also cause latitudinal gradients in dispersal ability, a key trait mediating sensitivity to habitat fragmentation. Here we combine field survey data with a morphological proxy for avian dispersal ability (hand-wing index) to assess responses to forest fragmentation in 1,034 bird species worldwide. We find that fragmentation sensitivity is strongly predicted by dispersal limitation and that other factors—latitude, body mass and historical disturbance events—have relatively limited explanatory power after accounting for species differences in dispersal. We also show that variation in dispersal ability is only weakly predicted by historical disturbance and more strongly associated with intra-annual temperature fluctuations (seasonality). Our results suggest that climatic factors play a dominant role in driving global variation in the impacts of forest fragmentation, emphasizing the need for more nuanced environmental policies that take into account local context and associated species traits.

  • Journal article
    Abubakkar-Waziri H, Kalaiarasan G, Wawman R, Hobbs F, Adcock I, Dilliway C, Fang F, Pain C, Porter A, Bhavsar PK, Ransome E, Savolainen V, Kumar P, Chung KFet al., 2023,

    SARS-CoV2 in public spaces in West London UK during COVID-19 pandemic

    , BMJ Open Respiratory Research, Vol: 10, ISSN: 2052-4439

    Background: Spread of SARS-CoV2 by aerosol is considered an important mode of transmission over distances >2 m, particularly indoors.Objectives: We determined whether SARS-CoV2 could be detected in the air of enclosed/semi-enclosed public spaces.Methods and analysis: Between March 2021 and December 2021 during the easing of COVID-19 pandemic restrictions after a period of lockdown, we used total suspended and size-segregated particulate matter (PM) samplers for the detection of SARS-CoV2 in hospitals wards and waiting areas, on public transport, in a university campus and in a primary school in West London.Results: We collected 207 samples, of which 20 (9.7%) were positive for SARS-CoV2 using quantitative PCR. Positive samples were collected from hospital patient waiting areas, from hospital wards treating patients with COVID-19 using stationary samplers and from train carriages in London underground using personal samplers. Mean virus concentrations varied between 429 500 copies/m3 in the hospital emergency waiting area and the more frequent 164 000 copies/m3 found in other areas. There were more frequent positive samples from PM samplers in the PM2.5 fractions compared with PM10 and PM1. Culture on Vero cells of all collected samples gave negative results.Conclusion: During a period of partial opening during the COVID-19 pandemic in London, we detected SARS-CoV2 RNA in the air of hospital waiting areas and wards and of London Underground train carriage. More research is needed to determine the transmission potential of SARS-CoV2 detected in the air.

  • Report
    Kirkpatrick L, Adjiman C, ApSimon H, Berry A, de Nazelle A, Mijic A, Myers R, Woodward G, Workman Met al., 2023,

    Systems thinking for the transition to zero pollution

    , Systems thinking for the transition to zero pollution,, Publisher: Grantham Institute, 40

    Systems approaches are vital for coordinating decision-making in the face of complex issues because they provide the whole picture view needed to avoid negative unintended consequences and to generate genuine benefits. This paper explains how systems thinking can be used to address environmental pollution and support decision-makers in finding solutions.

  • Journal article
    Terlau JF, Brose U, Boy T, Pawar S, Pinsky M, Hirt MRet al., 2023,

    Predicting movement speed of beetles from body size and temperature

    , MOVEMENT ECOLOGY, Vol: 11, ISSN: 2051-3933
  • Journal article
    Lopez-Romero FA, Stumpf S, Kamminga P, Boehmer C, Pradel A, Brazeau MD, Kriwet Jet al., 2023,

    Shark mandible evolution reveals patterns of trophic and habitat-mediated diversification

    , Communications Biology, Vol: 6, ISSN: 2399-3642

    Environmental controls of species diversity represent a central research focus in evolutionary biology. In the marine realm, sharks are widely distributed, occupying mainly higher trophic levels and varied dietary preferences, mirrored by several morphological traits and behaviours. Recent comparative phylogenetic studies revealed that sharks present a fairly uneven diversification across habitats, from reefs to deep-water. We show preliminary evidence that morphological diversification (disparity) in the feeding system (mandibles) follows these patterns, and we tested hypotheses linking these patterns to morphological specialisation. We conducted a 3D geometric morphometric analysis and phylogenetic comparative methods on 145 specimens representing 90 extant shark species using computed tomography models. We explored how rates of morphological evolution in the jaw correlate with habitat, size, diet, trophic level, and taxonomic order. Our findings show a relationship between disparity and environment, with higher rates of morphological evolution in reef and deep-water habitats. Deep-water species display highly divergent morphologies compared to other sharks. Strikingly, evolutionary rates of jaw disparity are associated with diversification in deep water, but not in reefs. The environmental heterogeneity of the offshore water column exposes the importance of this parameter as a driver of diversification at least in the early part of clade history.

  • Journal article
    Sethi S, Ewers RM, Balakrishnan R, 2023,

    Ecology: correct the digital data divide

    , NATURE, Vol: 617, Pages: 35-35, ISSN: 0028-0836
  • Journal article
    Osborne OG, Dobreva MP, Papadopulos AST, de Moura MSB, Brunello AT, de Queiroz LP, Pennington RT, Lloyd J, Savolainen Vet al., 2023,

    Mapping the root systems of individual trees in a natural community using genotyping-by-sequencing

    , New Phytologist, Vol: 238, Pages: 1305-1317, ISSN: 0028-646X

    •The architecture of root systems is an important driver of plant fitness, competition and ecosystem processes. However, the methodological difficulty of mapping roots hampers the study of these processes. Existing approaches to match individual plants to belowground samples are low throughput and species specific. Here, we developed a scalable sequencing-based method to map the root systems of individual trees across multiple species. We successfully applied it to a tropical dry forest community in the Brazilian Caatinga containing 14 species. • We sequenced all 42 individual shrubs and trees in a 14 × 14 m plot using double-digest restriction site-associated sequencing (ddRADseq). We identified species-specific markers and individual-specific haplotypes from the data. We matched these markers to the ddRADseq data from 100 mixed root samples from across the centre (10 × 10 m) of the plot at four different depths using a newly developed R package. • We identified individual root samples for all species and all but one individual. There was a strong significant correlation between belowground and aboveground size measurements, and we also detected significant species-level root-depth preference for two species. • The method is more scalable and less labour intensive than the current techniques and is broadly applicable to ecology, forestry and agricultural biology.

  • Journal article
    Cornford R, Spooner F, McRae L, Purvis A, Freeman Ret al., 2023,

    Ongoing over-exploitation and delayed responses to environmental change highlight the urgency for action to promote vertebrate recoveries by 2030

  • Journal article
    Shen Y, Cai W, Prentice IC, Harrison SPet al., 2023,

    Community abundance of resprouting in woody plants reflects fire return time, intensity, and type

    , Forests, Vol: 14, Pages: 1-13, ISSN: 1999-4907

    Plants in fire-prone ecosystems have evolved a variety of mechanisms to resist or adapt to fire. Post-fire resprouting is a key adaptation that promotes rapid ecosystem recovery and hence has a major impact on the terrestrial carbon cycle. However, our understanding of how the incidence of resprouting varies in different fire regimes is largely qualitative. The increasing availability of plant trait data and plot-based species cover data provides an opportunity to quantify the relationships between fire-related traits and fire properties. We investigated the quantitative relationship between fire frequency (expressed as the fire return time) and the proportion of resprouters in woody plants using plot data on species cover from Australia and Europe. We also examined the relationship between the proportion of resprouters and gross primary production (GPP) and grass cover, where GPP was assumed to reflect fuel loads and hence fire intensity, while grass cover was considered to be an indicator of the likelihood of ground fire and the speed of fire spread, using generalised linear modelling. The proportion of resprouting species decreased significantly as the fire return time increased. When the fire return time was considered along with other aspects of the fire regime, the proportion of resprouters had significant negative relationships with the fire return time and grass cover and a significant positive relationship with GPP. These findings demonstrate that plants with the ability to resprout occur more often where fire regimes are characterised by high-frequency and high-intensity crown fires. Establishing quantitative relationships between the incidence of resprouting and the fire return time and fire type provides a basis for modelling resprouting as a consequence of the characteristics of the fire regime, which in turn makes it possible to model the consequences of changing fire regimes on ecosystem properties.

  • Journal article
    Santini L, Tobias JA, Callaghan C, Gallego-Zamorano J, Benitez-Lopez Aet al., 2023,

    Global patterns and predictors of avian population density

  • Journal article
    Liu D, Semenchuk P, Essl F, Lenzner B, Moser D, Blackburn TM, Cassey P, Biancolini D, Capinha C, Dawson W, Dyer EE, Guenard B, Economo EP, Kreft H, Pergl J, Pysek P, van Kleunen M, Nentwig W, Rondinini C, Seebens H, Weigelt P, Winter M, Purvis A, Dullinger Set al., 2023,

    The impact of land use on non-native species incidence and number in local assemblages worldwide

  • Journal article
    Wyer C, Brian H, Cator L, 2023,

    Release from sexual selection leads to rapid genome-wide evolution in Aedes aegypti

    , Current Biology, Vol: 33, Pages: 1351-1357.e5, ISSN: 0960-9822

    The yellow fever mosquito, Aedes aegypti, mates in flight as part of ephemeral aggregations termed swarms. Swarms contain many more males than females, and males are thought to be subject to intense sexual selection.1,2 However, which male traits are involved in mating success and the genetic basis of these traits remains unclear. We used an experimental evolution approach to measure genome-wide responses of Ae. aegypti evolved in the presence and absence of sexual selection. These data revealed for the first time how sexual selection shapes the genome of this important species. We found that populations evolved under sexual selection retained greater genetic similarity to the ancestral population and a higher effective population size than populations evolving without sexual selection. When we compared evolutionary regimes, we found that genes associated with chemosensation responded rapidly to the elimination of sexual selection. Knockdown of one high-confidence candidate gene identified in our analysis significantly decreased male insemination success, further suggesting that genes related to male sensory perception are under sexual selection. Several mosquito control technologies involve the release of males from captive populations into the wild. For these interventions to work, a released male must compete against wild males to successfully inseminate a female. Our results suggest that maintaining the intensity of sexual selection in captive populations used in mass-releases is important for sustaining both male competitive ability and overall genetic similarity to field populations.

  • Journal article
    Liu M, Shen Y, Gonzalez-Samperiz P, Gil-Romera G, ter Braak CJF, Prentice IC, Harrison SPet al., 2023,

    Holocene climates of the Iberian Penisula: pollen-based reconstructions of changes in the west-east gradient of temperature and moisture

    , Climate of the Past, Vol: 19, Pages: 803-834, ISSN: 1814-9324

    The Iberian Peninsula is characterised by a steep west-east moisture gradient today, reflecting the dominance of maritime influences along the Atlantic coast and more Mediterranean-type climate further east. Holocene pollen records from the Peninsula suggest that this gradient was less steep during the mid-Holocene, possibly reflecting the impact of orbital changes on circulation and thus regional patterns in climate. Here we use 7214 pollen samples from 117 sites covering part or all of the last 12,000 years to reconstruct changes in seasonal temperature and in moisture across the Iberian Peninsula quantitatively. We show that there is an increasing trend in winter temperature at a regional scale, consistent with known changes in winter insolation. However, summer temperatures do not show the decreasing trend through the Holocene that would be expected if they were a direct response to insolation forcing. We show that summer temperature is strongly correlated with plant-available moisture (α), as measured by the ratio of actual evapotranspiration to equilibrium evapotranspiration, which declines through the Holocene. The reconstructions also confirm that the west-east gradient in moisture was considerably less steep than today during the mid-Holocene, indicating that atmospheric circulation changes (possibly driven by orbital changes) have been important determinants of the Holocene climate of the region.

  • Journal article
    Gkourtsouli-Antoniadou I, Ewing SRR, Hudson G, Pearson MAA, Schroeder J, Welch PEE, Wilkinson NII, Dunning Jet al., 2023,

    Age-specific survival in an English Twite <i>Linaria flavirostris</i> population

    , BIRD STUDY, Vol: 70, Pages: 59-63, ISSN: 0006-3657
  • Journal article
    Hong P, Li Z, Yang Q, Deng W, Xu Y, Tobias JA, Wang Set al., 2023,

    Functional traits and environment jointly determine the spatial scaling of population stability in North American birds

    , ECOLOGY, Vol: 104, ISSN: 0012-9658
  • Journal article
    Lawson J, Rizos G, Jasinghe D, Whitworth A, Schuller B, Banks-leite Cet al., 2023,

    Automated acoustic detection of Geoffroy's spider monkey highlights tipping points of human disturbance

  • Journal article
    Bloomfield K, van Hoolst R, Balzarolo M, Janssens IA, Vicca S, Ghent D, Prentice ICet al., 2023,

    Towards a general monitoring system for terrestrial primary production: a test spanning the European drought of 2018

    , Remote Sensing, Vol: 15, Pages: 1-15, ISSN: 2072-4292

    (1) Land surface models require inputs of temperature and moisture variables to generate predictions of gross primary production (GPP). Differences between leaf and air temperature vary temporally and spatially and may be especially pronounced under conditions of low soil moisture availability. The Sentinel-3 satellite mission offers estimates of the land surface temperature (LST), which for vegetated pixels can be adopted as the canopy temperature. Could remotely sensed estimates of LST offer a parsimonious input to models by combining information on leaf temperature and hydration? (2) Using a light use efficiency model that requires only a handful of input variables, we generated GPP simulations for comparison with eddy-covariance inferred estimates available from flux sites within the Integrated Carbon Observation System. Remotely sensed LST and greenness data were input from Sentinel-3. Gridded air temperature data were obtained from the European Centre for Medium-Range Weather Forecasts. We chose the years 2018–2019 to exploit the natural experiment of a pronounced European drought. (3) Simulated GPP showed good agreement with flux-derived estimates. During dry conditions, simulations forced with LST performed better than those with air temperature for shrubland, grassland and savanna sites. (4) This study advances the prospect for a global GPP monitoring system that will rely primarily on remotely sensed inputs.

  • Report
    Preston-Allen R, Albini D, Barron L, Collins CM, Dumbrell A, Duncalf-Youngson H, Jackson M, Johnson A, Prentis A, Spurgeon D, Stasik N, Wells C, Woodward G, Perkins Ret al., 2023,

    Are urban areas hotspots for pollution from pet parasiticides?

    , Are urban areas hotspots for pollution from pet parasiticides?,, Publisher: Grantham Institute, Briefing Note 15

    This briefing considers the environmental impact of pet parasiticides, which are commonly used to kill parasites such as fleas and ticks. It reviews possible routes that chemicals from veterinary parasiticides enter the environment, what impacts they may have on natural ecosystems and how to balance the needs of domestic pets, people, and the environment.

  • Journal article
    Dunning J, Burke T, Chan AHH, Chik HYJ, Evans T, Schroeder Jet al., 2023,

    Opposite-sex associations are linked with annual fitness, but sociality is stable over lifetime

  • Journal article
    Flintham E, Savolainen V, Mullon C, 2023,

    Male harm offsets the demographic benefits of good genes

    , Proceedings of the National Academy of Sciences of USA, Vol: 120, Pages: 1-9, ISSN: 0027-8424

    Sexual conflict can arise when males evolve traits that improve their mating success but in doing so harm females. By reducing female fitness, male harm can diminish offspring production in a population and even drive extinction. Current theory on harm is based on the assumption that an individual’s phenotype is solely determined by its genotype. But the expression of most sexually selected traits is also influenced by variation in biological condition (condition-dependent expression), such that individuals in better condition can express more extreme phenotypes. Here, we developed demographically explicit models of sexual conflict evolution where individuals vary in their condition. Because condition-dependent expression readily evolves for traits underlying sexual conflict, we show that conflict is more intense in populations where individuals are in better condition. Such intensified conflict reduces mean fitness and can thus generate a negative association between condition and population size. The impact of condition on demography is especially likely to be detrimental when the genetic basis of condition coevolves with sexual conflict. This occurs because sexual selection favors alleles that improve condition (the so-called good genes effect), producing feedback between condition and sexual conflict that drives the evolution of intense male harm. Our results indicate that in presence of male harm, the good genes effect in fact easily becomes detrimental to populations.

  • Journal article
    Cantwell-Jones A, Larson K, Ward A, Bates OK, Cox T, Gibbons C, Richardson R, Al-Hayali AMR, Svedin J, Aronsson M, Brannlund F, Tylianakis JM, Johansson J, Gill RJet al., 2023,

    Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community

    , Functional Ecology, Vol: 37, Pages: 748-762, ISSN: 0269-8463

    Functional overlap among species (redundancy) is considered important in shaping competitive and mutualistic interactions that determine how communities respond to environmental change. Most studies view functional redundancy as static, yet traits within species—which ultimately shape functional redundancy—can vary over seasonal or spatial gradients. We therefore have limited understanding of how trait turnover within and between species could lead to changes in functional redundancy or how loss of traits could differentially impact mutualistic interactions depending on where and when the interactions occur in space and time. Using an Arctic bumblebee community as a case study, and 1277 individual measures from 14 species over three annual seasons, we quantified how inter- and intraspecific body-size turnover compared to species turnover with elevation and over the season. Coupling every individual and their trait with a plant visitation, we investigated how grouping individuals by a morphological trait or by species identity altered our assessment of network structure and how this differed in space and time. Finally, we tested how the sensitivity of the network in space and time differed when simulating extinction of nodes representing either morphological trait similarity or traditional species groups. This allowed us to explore the degree to which trait-based groups increase or decrease interaction redundancy relative to species-based nodes. We found that (i) groups of taxonomically and morphologically similar bees turn over in space and time independently from each other, with trait turnover being larger over the season; (ii) networks composed of nodes representing species versus morphologically similar bees were structured differently; and (iii) simulated loss of bee trait groups caused faster coextinction of bumblebee species and flowering plants than when bee taxonomic groups were lost. Crucially, the magnitude of these effects varied in spa

  • Journal article
    Valdez JWW, Callaghan CTT, Junker J, Purvis A, Hill SLL, Pereira HMMet al., 2023,

    The undetectability of global biodiversity trends using local species richness

    , ECOGRAPHY, Vol: 2023, ISSN: 0906-7590

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=562&limit=30&resgrpMemberPubs=true&resgrpMemberPubs=true&page=3&respub-action=search.html Current Millis: 1713380947532 Current Time: Wed Apr 17 20:09:07 BST 2024