Results
- Showing results for:
- Reset all filters
Search results
-
Journal articleMüller-Wodarg ICF, Bruinsma S, Marty J-C, et al., 2016,
In situ observations of waves in Venus’s polar lower thermosphere with Venus Express aerobraking
, Nature Physics, Vol: 12, Pages: 767-771, ISSN: 1745-2481Waves are ubiquitous phenomena found in oceans and atmospheres alike. From the earliest formal studies of waves in the Earth’s atmosphere to more recent studies on other planets, waves have been shown to play a key role in shaping atmospheric bulk structure, dynamics and variability1, 2, 3, 4. Yet, waves are difficult to characterize as they ideally require in situ measurements of atmospheric properties that are difficult to obtain away from Earth. Thus, we have incomplete knowledge of atmospheric waves on planets other than our own, and we are thereby limited in our ability to understand and predict planetary atmospheres. Here we report the first ever in situ observations of atmospheric waves in Venus’s thermosphere (130–140 km) at high latitudes (71.5°–79.0°). These measurements were made by the Venus Express Atmospheric Drag Experiment (VExADE)5 during aerobraking from 24 June to 11 July 2014. As the spacecraft flew through Venus’s atmosphere, deceleration by atmospheric drag was sufficient to obtain from accelerometer readings a total of 18 vertical density profiles. We infer an average temperature of T = 114 ± 23 K and find horizontal wave-like density perturbations and mean temperatures being modulated at a quasi-5-day period.
-
Journal articleLai HR, Russell CT, Jia YD, et al., 2016,
Transport of magnetic flux and mass in Saturn's inner magnetosphere
, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 3050-3057, ISSN: 2169-9402It is well accepted that cold plasma sourced by Enceladus is ultimately lost to the solar wind, while the magnetic flux convecting outward with the plasma must return to the inner magnetosphere. However, whether the interchange or reconnection, or a combination of the two processes is the dominant mechanism in returning the magnetic flux is still under debate. Initial Cassini observations have shown that the magnetic flux returns in the form of flux tubes in the inner magnetosphere. Here we investigate those events with 10 year Cassini magnetometer data and confirm that their magnetic signatures are determined by the background plasma environments: inside (outside) the plasma disk, the returning magnetic field is enhanced (depressed) in strength. The distribution, temporal variation, shape, and transportation rate of the flux tubes are also characterized. The flux tubes break into smaller ones as they convect in. The shape of their cross section is closer to circular than fingerlike as produced in the simulations based on the interchange mechanism. In addition, no sudden changes in any flux tube properties can be found at the “boundary” which has been claimed to separate the reconnection and interchange-dominant regions. On the other hand, reasonable cold plasma loss rate and outflow velocity can be obtained if the transport rate of the magnetic flux matches the reconnection rate, which supports reconnection alone as the dominant mechanism in unloading the cold plasma from the inner magnetosphere and returning the magnetic flux from the tail.
-
Journal articleArridge CS, Jasinski JM, Achilleos N, et al., 2016,
Cassini observations of Saturn's southern polar cusp
, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 3006-3030, ISSN: 2169-9402The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth has enabled considerable progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptune's cusp in 1989, but highly inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly study the polar magnetosphere of a rapidly rotating planet. In this paper we discuss observations made by Cassini during two passes through Saturn's southern polar magnetosphere. Our main findings are that (i) Cassini directly encounters the southern polar cusp with evidence for the entry of magnetosheath plasma into the cusp via magnetopause reconnection, (ii) magnetopause reconnection and entry of plasma into the cusp can occur over a range of solar wind conditions, and (iii) double cusp morphologies are consistent with the position of the cusp oscillating in phase with Saturn's global magnetospheric periodicities.
-
Journal articleMallet A, Schekochihin AA, Chandran BDG, et al., 2016,
Measures of three-dimensional anisotropy and intermittency in strong Alfvénic turbulence
, Monthly Notices of the Royal Astronomical Society, Vol: 459, Pages: 2130-2139, ISSN: 1365-2966We measure the local anisotropy of numerically simulated strong Alfvénic turbulence with respect to two local, physically relevant directions: along the local mean magnetic field and along the local direction of one of the fluctuating Elsasser fields. We find significant scaling anisotropy with respect to both these directions: the fluctuations are ‘ribbon-like’ – statistically, they are elongated along both the mean magnetic field and the fluctuating field. The latter form of anisotropy is due to scale-dependent alignment of the fluctuating fields. The intermittent scalings of the nth-order conditional structure functions in the direction perpendicular to both the local mean field and the fluctuations agree well with the theory of Chandran, Schekochihin & Mallet, while the parallel scalings are consistent with those implied by the critical-balance conjecture. We quantify the relationship between the perpendicular scalings and those in the fluctuation and parallel directions, and find that the scaling exponent of the perpendicular anisotropy (i.e. of the aspect ratio of the Alfvénic structures in the plane perpendicular to the mean magnetic field) depends on the amplitude of the fluctuations. This is shown to be equivalent to the anticorrelation of fluctuation amplitude and alignment at each scale. The dependence of the anisotropy on amplitude is shown to be more significant for the anisotropy between the perpendicular and fluctuation-direction scales than it is between the perpendicular and parallel scales.
-
Journal articleLavraud B, Zhang YC, Vernisse Y, et al., 2016,
Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause
, Geophysical Research Letters, Vol: 43, Pages: 3042-3050, ISSN: 1944-8007Based on high-resolution measurements from NASA's Magnetospheric Multiscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90° away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
-
Journal articleGibbon JD, Gupta A, Krstulovic G, et al., 2016,
Depletion of nonlinearity in magnetohydrodynamic turbulence: insights from analysis and simulations
, Physical Review E, Vol: 93, ISSN: 1539-3755 -
Journal articlePark C, Min S-K, Lee D, et al., 2016,
Evaluation of multiple regional climate models for summer climate extremes over East Asia
, CLIMATE DYNAMICS, Vol: 46, Pages: 2469-2486, ISSN: 0930-7575- Cite
- Citations: 94
-
Journal articleLee D, Park C, Kim Y-H, et al., 2016,
Evaluation of the COSMO-CLM for East Asia Climate simulations: Sensitivity to Spectral Nudging
, Journal of Climate Research, Vol: 11, Pages: 69-85, ISSN: 1975-6151 -
Journal articleBale SD, Goetz K, Harvey PR, et al., 2016,
The FIELDS Instrument Suite for Solar Probe Plus
, Space Science Reviews, Vol: 204, Pages: 49-82, ISSN: 0038-6308NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurementsof the solar corona and the birthplace of the solar wind. The FIELDS instrument suiteon SPP will make direct measurements of electric and magnetic fields, the properties ofin situ plasma waves, electron density and temperature profiles, and interplanetary radioemissions, amongst other things. Here, we describe the scientific objectives targeted by theSPP/FIELDS instrument, the instrument design itself, and the instrument concept of operationsand planned data products.
-
Journal articleSmillie DG, Pickering JC, Nave G, et al., 2016,
The spectrum and term analysis of Co iii measured using Fourier transforms and grating spectroscopy
, Astrophysical Journal Supplement Series, Vol: 223, ISSN: 1538-4365The spectrum of Co iii has been recorded in the region 1562–2564 Å (64,000 cm−1–39,000 cm−1) by Fourier transform (FT) spectroscopy, and in the region 1317–2500 Å (164,000 cm−1–40,000 cm−1) using a 10.7 m grating spectrograph with phosphor image plate detectors. The spectrum was excited in a cobalt–neon Penning discharge lamp. We classified 514 Co iii lines measured using FT spectroscopy, the strongest having wavenumber uncertainties approaching 0.004 cm−1 (approximately 0.2 mÅ at 2000 Å, or 1 part in 107), and 240 lines measured with grating spectroscopy with uncertainties between 5 and 10 mÅ. The wavelength calibration of 790 lines of Raassen & Ortí Ortin and 87 lines from Shenstone has been revised and combined with our measurements to optimize the values of all but one of the 288 previously reported energy levels. Order of magnitude reductions in uncertainty for almost two-thirds of the 3d64s and almost half of the 3d64p revised energy levels are obtained. Ritz wavelengths have been calculated for an additional 100 forbidden lines. Eigenvector percentage compositions for the energy levels and predicted oscillator strengths have been calculated using the Cowan code.
-
Journal articleKimura T, Kraft RP, Elsner RF, et al., 2016,
Jupiter's X-ray and EUV auroras monitored by Chandra, XMM-Newton, and Hisaki satellite
, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 2308-2320, ISSN: 2169-9402Jupiter's X-ray auroral emission in the polar cap region results from particles which have undergone strong field-aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X-ray emission are essential to uncover the driving mechanism for the high-energy acceleration. The magnetospheric location of the source field line where the X-ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long-term monitoring of the X-rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long-term multiwavelength monitoring of Jupiter's X-ray and EUV auroral emissions was made by the Chandra X-ray Observatory, XMM-Newton, and Hisaki satellite. We find that the X-ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X-ray auroral region was found to be open to the interplanetary space. The other half of the X-ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin-Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high-energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators.
-
Journal articleTao J, Wang L, Zong Q, et al., 2016,
QUIET-TIME SUPRATHERMAL (∼0.1-1.5 keV) ELECTRONS IN THE SOLAR WIND
, ASTROPHYSICAL JOURNAL, Vol: 820, ISSN: 0004-637X- Author Web Link
- Cite
- Citations: 28
-
Journal articleMarsham JH, Parker DJ, Todd MC, et al., 2016,
The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan heat low
, Atmospheric Chemistry and Physics, Vol: 16, Pages: 3563-3575, ISSN: 1680-7324The summertime Sahara heat low (SHL) is a key component of the West African monsoon (WAM) system. Considerable uncertainty remains over the relative roles of water vapour and dust aerosols in controlling the radiation budget over the Sahara and therefore our ability to explain variability and trends in the SHL, and in turn, the WAM. Here, new observations from Fennec supersite-1 in the central Sahara during June 2011 and June 2012, together with satellite retrievals from GERB, are used to quantify how total column water vapour (TCWV) and dust aerosols (from aerosol optical depth, AOD) control day-to-day variations in energy balance in both observations and ECWMF reanalyses (ERA-I). The data show that the earth-atmosphere system is radiatively heated in June 2011 and 2012. Although the empirical analysis of observational data cannot completely disentangle the roles of water vapour, clouds and dust, the analysis demonstrates that TCWV provides a far stronger control on TOA net radiation, and so the net heating of the earth-atmosphere system, than AOD does. In contrast, variations in dust provide a much stronger control on surface heating, but the decreased surface heating associated with dust is largely compensated by increased atmospheric heating, and so dust control on net TOA radiation is weak. Dust and TCWV are both important for direct atmospheric heating. ERA-I, which assimilated radiosondes from the Fennec campaign, captures the control of TOA net flux by TCWV, with a positive correlation (r = 0.6) between observed and modelled TOA net radiation, despite the use of a monthly dust climatology in ERA-I that cannot capture the daily variations in dustiness. Variations in surface net radiation, and so the vertical profile of radiative heating, are not captured in ERA-I, since it does not capture variations in dust. Results show that ventilation of the SHL by cool moist air leads to a radiative warming, stabilising the SHL with respect to such perturbations. It is k
-
Book chapterMoore L, Stallard T, Galand MIF, 2016,
Upper atmospheres of the giant planets
, Heliophysics: Active Stars, their Astrospheres, and Impacts on Planetary Environments, Editors: Schrijver, Bagenal, Sojka, Publisher: Cambridge University Press, Pages: 175-200, ISBN: 9781107090477 -
Journal articleSamset BH, Myhre G, Forster PM, et al., 2016,
Fast and slow precipitation responses to individual climate forcers: a PDRMIP multimodel study
, Geophysical Research Letters, Vol: 43, Pages: 2782-2791, ISSN: 1944-8007Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.
-
Journal articleParfitt R, czaja A, Minobe S, et al., 2016,
The atmospheric frontal response to SST perturbations in the Gulf Stream region
, Geophysical Research Letters, Vol: 43, Pages: 2299-2306, ISSN: 1944-8007The link between sea surface temperature (SST) gradients and atmospheric fronts is explored in a general circulation model across the Gulf Stream (GS) region from December to February 1981–2000. Two model experiments are analyzed, one with a realistic control SST distribution and one with a spatially smoothed SST distribution. The analysis shows a noticeable change in regional atmospheric frontal frequency between the two experiments (up to 30%), with the distribution of change exhibiting a clear imprint of the GS SST front. Further analysis of the surface sensible heat flux gradient across cold fronts reveals the pattern of change to be mediated by a thermal interaction between the oceanic and atmospheric fronts (“thermal damping and strengthening”). These results not only emphasize the significance of the GS SST gradient for storm development in the North Atlantic but also highlight the importance of resolution in assessing the role of frontal air-sea interaction in midlatitude climate variability.
-
Journal articleGoetz C, Koenders C, Richter I, et al., 2016,
First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko
, Astronomy & Astrophysics, Vol: 588, ISSN: 1432-0746Context. The Rosetta magnetometer RPC-MAG has been exploring the plasma environment of comet 67P/Churyumov-Gerasimenko since August 2014. The first months were dominated by low-frequency waves which evolved into more complex features. However, at the end of July 2015, close to perihelion, the magnetometer detected a region that did not contain any magnetic field at all. Aims. These signatures match the appearance of a diamagnetic cavity as was observed at comet 1P/Halley in 1986. The cavity here is more extended than previously predicted by models and features unusual magnetic field configurations, which need to be explained. Methods. The onboard magnetometer data were analyzed in detail and used to estimate the outgassing rate. A minimum variance analysis was used to determine boundary normals. Results. Our analysis of the data acquired by the Rosetta Plasma Consortium instrumentation confirms the existence of a diamagnetic cavity. The size is larger than predicted by simulations, however. One possible explanation are instabilities that are propagating along the cavity boundary and possibly a low magnetic pressure in the solar wind. This conclusion is supported by a change in sign of the Sun-pointing component of the magnetic field. Evidence also indicates that the cavity boundary is moving with variable velocities ranging from 230-500 m/s.
-
Journal articlePhan TD, Shay MA, Eastwood JP, et al., 2016,
Establishing the Context for Reconnection Diffusion Region Encounters and Strategies for the Capture and Transmission of Diffusion Region Burst Data by MMS
, Space Science Reviews, Vol: 199, Pages: 631-650, ISSN: 0038-6308© 2015, The Author(s). This paper describes the efforts of our Inter-Disciplinary Scientist (IDS) team to (a) establish the large-scale context for reconnection diffusion region encounters by MMS at the magnetopause and in the magnetotail, including the distinction between X-line and O-line encounters, that would help the identification of diffusion regions in spacecraft data, and (b) devise possible strategies that can be used by MMS to capture and transmit burst data associated with diffusion region candidates. At the magnetopause we suggest the strategy of transmitting burst data from all magnetopause crossings so that no magnetopause reconnection diffusion regions encountered by the spacecraft will be missed. The strategy is made possible by the MMS mass memory and downlink budget. In the magnetotail, it is estimated that MMS will be able to transmit burst data for all diffusion regions, all reconnection jet fronts (a.k.a. dipolarization fronts) and separatrix encounters, but less than 50 % of reconnection exhausts encountered by the spacecraft. We also discuss automated burst trigger schemes that could capture various reconnection-related phenomena. The identification of candidate diffusion region encounters by the burst trigger schemes will be verified and improved by a Scientist-In-The-Loop (SITL). With the knowledge of the properties of the region surrounding the diffusion region and the combination of automated burst triggers and further optimization by the SITL, MMS should be able to capture most diffusion regions it encounters.
-
Journal articleBall WT, Haigh JD, Rozanov EV, et al., 2016,
High solar cycle spectral variations inconsistent with stratospheric ozone observations
, Nature Geoscience, Vol: 9, Pages: 206-209, ISSN: 1752-0894 -
Journal articleChadney JM, Galand M, Koskinen TT, et al., 2016,
EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars
, Astronomy & Astrophysics, Vol: 587, ISSN: 1432-0746The composition and structure of the upper atmospheres of Extrasolar GiantPlanets (EGPs) are affected by the high-energy spectrum of their host starsfrom soft X-rays to EUV. This emission depends on the activity level of thestar, which is primarily determined by its age. We focus upon EGPs orbiting K-and M-dwarf stars of different ages. XUV spectra for these stars areconstructed using a coronal model. These spectra are used to drive both athermospheric model and an ionospheric model, providing densities of neutraland ion species. Ionisation is included through photo-ionisation andelectron-impact processes. We find that EGP ionospheres at all orbitaldistances considered and around all stars selected are dominated by thelong-lived H$^+$ ion. In addition, planets with upper atmospheres where H$_2$is not substantially dissociated have a layer in which H$_3^+$ is the major ionat the base of the ionosphere. For fast-rotating planets, densities ofshort-lived H$_3^+$ undergo significant diurnal variations, with the maximumvalue being driven by the stellar X-ray flux. In contrast, densities oflonger-lived H$^+$ show very little day/night variability and the magnitude isdriven by the level of stellar EUV flux. The H$_3^+$ peak in EGPs with upperatmospheres where H$_2$ is dissociated under strong stellar illumination ispushed to altitudes below the homopause, where this ion is likely to bedestroyed through reactions with heavy species. The inclusion of secondaryionisation processes produces significantly enhanced ion and electron densitiesat altitudes below the main EUV ionisation peak, as compared to models that donot include electron-impact ionisation. We estimate infrared emissions fromH$_3^+$, and while, in an H/H$_2$/He atmosphere, these are larger from planetsorbiting close to more active stars, they still appear too low to be detectedwith current observatories.
-
Journal articleWeiss Z, Steers EBM, Mushtaq S, et al., 2016,
The use of radiative transition rates to study the changes in the excitation of Cu ions in a Ne glow discharge caused by small additions of H-2, O-2 and N-2
, Spectrochimica Acta Part B: Atomic Spectroscopy, Vol: 118, Pages: 81-89, ISSN: 1873-3565The excitation of Cu+ ions in a Ne glow discharge with small additions of H2, O2 and N2 was studied. Ratios of radiative transition rates between different Cu II levels in a discharge in neon, with and without the molecular gas added, were calculated, and the formalism of transition rate ratio (TRR) diagrams was developed and used to study the changing excitation conditions. Virtually no changes in the excitation of Cu+ ions occur in a neon discharge if nitrogen is added. Additions of hydrogen and oxygen to neon as the discharge gas affect excitation of the 4d, 5s and some other Cu II levels in the vicinity of the ionization energy of neon (21.56 eV). Also some lower Cu II levels, excited by radiative decay of those higher energy levels, are affected. The 4p 3P2 level at 15.96 eV is enhanced by additions of hydrogen. It was suggested that this enhancement is caused by the asymmetric charge transfer reaction between neutral copper atoms and the H2+ molecular ions.
-
Journal articleRussell CT, Wei HY, Cowee MM, et al., 2016,
Ion cyclotron waves at Titan
, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 2095-2103, ISSN: 2169-9402During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm−3 to 0.02 cm−3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm−3 to 0.25 cm−3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.
-
Journal articleCeppi P, McCoy DT, Hartmann DL, 2016,
Observational evidence for a negative shortwave cloud feedback in middle to high latitudes
, GEOPHYSICAL RESEARCH LETTERS, Vol: 43, Pages: 1331-1339, ISSN: 0094-8276- Author Web Link
- Cite
- Citations: 60
-
Journal articleMushtaq S, Steers EBM, Churchill G, et al., 2016,
Does asymmetric charge transfer play an important role as an ionization mode in low power-low pressure glow discharge mass spectrometry?
, Spectrochimica Acta Part B-Atomic Spectroscopy, Vol: 118, Pages: 56-61, ISSN: 0584-8547 -
Journal articleRaghuram S, Bhardwaj A, Galand M, 2016,
Prediction of forbidden ultraviolet and visible emissions in comet 67P/Churyumov-Gerasimenko
, Astrophysical Journal, Vol: 818, ISSN: 1538-4357Remote observation of spectroscopic emissions is a potential tool for theidentification and quantification of various species in comets. CO Cameron band(to trace \cod) and atomic oxygen emissions (to trace H$_2$O and/or CO$_2$, CO)have been used to probe neutral composition in the cometary coma. Using acoupled-chemistry emission model, various excitation processes controlling COCameron band and different atomic oxygen and atomic carbon have been modelledin comet 67P-Churyumov-Gerasimenko at 1.29~AU (perihelion) and at 3~AUheliocentric distances, which is being explored by ESA's Rosetta mission. Theintensities of CO Cameron band, atomic oxygen and atomic carbon emission linesas a function of projected distance are calculated for different CO and CO$_2$volume mixing ratios relative to water. Contributions of different excitationprocesses controlling these emissions are quantified. We assess how CO$_2$and/or CO volume mixing ratios with respect to H$_2$O can be derived based onthe observed intensities of CO Cameron band, atomic oxygen, and atomic carbonemission lines.The results presented in this work serve as base linecalculations to understand the behaviour of low out-gassing cometary coma andcompare them with the higher gas production rate cases (e.g. comet Halley).Quantitative analysis of different excitation processes governing thespectroscopic emissions is essential to study the chemistry of inner coma andto derive neutral gas composition.
-
Journal articleVolwerk M, Richter I, Tsurutani B, et al., 2016,
Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko
, Annales Geophysicae, Vol: 34, Pages: 1-15, ISSN: 1432-0576. The data from all Rosetta Plasma Consortium instruments and from the ROSINA COPSinstrument are used to study the interaction of the solar wind with the outgassing cometary nucleusof 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominatedby an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. Thispressure compressed the draped magnetic field around the comet, and the increase in solar windelectrons enhanced the ionization of the outflow gas through collisional ionization. The new ionsare picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in ahigh-β plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modesare observed: one of small size generated by locally ionized water and one of large size generatedby ionization and pick-up farther away from the comet.
-
Journal articleEdberg NJT, Eriksson AI, Odelstad E, et al., 2016,
Solar wind interaction with comet 67P: impacts of corotating interaction regions
, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 949-965, ISSN: 2169-9402We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a CME, are traced from Earth via Mars (using Mars Express and MAVEN) and to comet 67P from October to December 2014. When the comet is 3.1-2.7 AU from the Sun and the neutral outgassing rate ∼1025−1026 s−1 the CIRs significantly influence the cometary plasma environment at altitudes down to 10-30 km. The ionospheric low-energy (∼5 eV) plasma density increases significantly in all events, by a factor >2 in events 1-2 but less in events 3-4. The spacecraft potential drops below -20V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionisation, and possibly charge exchange processes and acceleration of mass loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (∼10-100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2-5 as more interplanetary magnetic field piles up around of the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.
-
Journal articleSigsbee K, Kletzing CA, Smith CW, et al., 2016,
Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout
, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 1990-2008, ISSN: 2169-9402We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, THEMIS-A (P5), Cluster 2, and Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 hours from 12–14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ EMIC waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13–14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst < −100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near pre-storm values, possibly in response to strong ultra-low frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.
-
Journal articleFelici M, Arridge CS, Coates AJ, et al., 2016,
Cassini observations of ionospheric plasma in Saturn's magnetotail lobes
, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 338-357, ISSN: 2169-9402Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a case study of data from Saturn's magnetotail, when Cassini was located at ≃ 2200 h Saturn local time at 36 RS from Saturn. During several entries into the magnetotail lobe, tailward flowing cold electrons and a cold ion beam were observed directly adjacent to the plasma sheet and extending deeper into the lobe. The electrons and ions appear to be dispersed, dropping to lower energies with time. The composition of both the plasma sheet and lobe ions show very low fluxes (sometimes zero within measurement error) of water group ions. The magnetic field has a swept-forward configuration which is atypical for this region, and the total magnetic field strength is larger than expected at this distance from the planet. Ultraviolet auroral observations show a dawn brightening, and upstream heliospheric models suggest that the magnetosphere is being compressed by a region of high solar wind ram pressure. We interpret this event as the observation of ionospheric outflow in Saturn's magnetotail. We estimate a number flux between (2.95 ± 0.43) × 109 and (1.43 ± 0.21) × 1010 cm−2 s−1, 1 or about 2 orders of magnitude larger than suggested by steady state MHD models, with a mass source between 1.4 ×102 and 1.1 ×103 kg/s. After considering several configurations for the active atmospheric regions, we consider as most probable the main auroral oval, with associated mass source between 49.7 ±13.4 and 239.8 ±64.8 kg/s for an average auroral oval, and 10 ±4 and 49 ±23 kg/s for the specific auroral oval morphology found
-
Journal articleHood AW, Cargill PJ, Browning PK, et al., 2016,
An MHD avalanche in a multi-threaded coronal loop
, Astrophysical Journal, Vol: 817, ISSN: 1538-4357
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.