guy poncing

Synthetic Biology underpins advances in the bioeconomy

Biological systems - including the simplest cells - exhibit a broad range of functions to thrive in their environment. Research in the Imperial College Centre for Synthetic Biology is focused on the possibility of engineering the underlying biochemical processes to solve many of the challenges facing society, from healthcare to sustainable energy. In particular, we model, analyse, design and build biological and biochemical systems in living cells and/or in cell extracts, both exploring and enhancing the engineering potential of biology. 

As part of our research we develop novel methods to accelerate the celebrated Design-Build-Test-Learn synthetic biology cycle. As such research in the Centre for Synthetic Biology highly multi- and interdisciplinary covering computational modelling and machine learning approaches; automated platform development and genetic circuit engineering ; multi-cellular and multi-organismal interactions, including gene drive and genome engineering; metabolic engineering; in vitro/cell-free synthetic biology; engineered phages and directed evolution; and biomimetics, biomaterials and biological engineering.

Publications

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Tomazou M, Stan G-B, 2018,

    Portable gene expression guaranteed

    , NATURE BIOTECHNOLOGY, Vol: 36, Pages: 313-314, ISSN: 1087-0156
  • Journal article
    Aw R, McKay P, Shattock R, Polizzi KMet al., 2018,

    A systematic analysis of the expression of the anti-HIV VRC01 antibody in Pichia pastoris through signal peptide optimization

    , Protein Expression and Purification, ISSN: 1046-5928
  • Journal article
    Pothoulakis G, Ellis T, 2018,

    Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression

    , PLoS ONE, Vol: 13, ISSN: 1932-6203

    Engineered promoters with predefined regulation are a key tool for synthetic biology that enable expression on demand and provide the logic for genetic circuits. To expand the availability of synthetic biology tools for S. cerevisiae yeast, we here used hybrid promoter engineering to construct tightly-controlled, externally-inducible promoters that only express in haploid mother cells that have contributed a daughter cell to the population. This is achieved by combining elements from the native HO promoter and from a TetR-repressible synthetic promoter, with the performance of these promoters characterized by both flow cytometry and microfluidics-based fluorescence microscopy. These new engineered promoters are provided as an enabling tool for future synthetic biology applications that seek to exploit differentiation within a yeast population.

  • Journal article
    Cox R, Madsen C, McLaughlin J, Nguyen T, Roehner N, Bartley B, Bhatia S, Bissell M, Clancy K, Gorochowski T, Grunberg R, Luna A, Le Novere N, Pocock M, Sauro H, Sexton J, Stan G, Tabor J, Voigt C, Zundel Z, Myers C, Beal J, Wipat Aet al., 2018,

    Synthetic Biology Open Language Visual (SBOL Visual) Version 2.0

    , Journal of Integrative Bioinformatics, Vol: 15, ISSN: 1613-4516

    People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.0 of SBOL Visual, which builds on the prior SBOL Visual 1.0 standard by expanding diagram syntax to include functional interactions and molecular species, making the relationship between diagrams and the SBOL data model explicit, supporting families of symbol variants, clarifying a number of requirements and best practices, and significantly expanding the collection of diagram glyphs.

  • Journal article
    Hindley JW, Elani Y, McGilvery CM, Ali S, Bevan CL, Law R, Ces Oet al., 2018,

    Light-triggered enzymatic reactions in nested vesicle reactors

    , Nature Communications, Vol: 9, Pages: 1-6, ISSN: 2041-1723

    Cell-sized vesicles have tremendous potential both as miniaturised pL reaction vessels and in bottom-up synthetic biology as chassis for artificial cells. In both these areas the introduction of light-responsive modules affords increased functionality, for example, to initiate enzymatic reactions in the vesicle interior with spatiotemporal control. Here we report a system composed of nested vesicles where the inner compartments act as phototransducers, responding to ultraviolet irradiation through diacetylene polymerisation-induced pore formation to initiate enzymatic reactions. The controlled release and hydrolysis of a fluorogenic β-galactosidase substrate in the external compartment is demonstrated, where the rate of reaction can be modulated by varying ultraviolet exposure time. Such cell-like nested microreactor structures could be utilised in fields from biocatalysis through to drug delivery.

  • Journal article
    Elani Y, Trantidou T, Wylie D, Dekker L, Polizzi K, Law R, Ces Oet al., 2018,

    Constructing vesicle-based artificial cells with embedded living cells as organelle-like modules

    , Scientific Reports, Vol: 8, Pages: 1-8, ISSN: 2045-2322

    There is increasing interest in constructing artificial cells by functionalising lipid vesicles with biological and synthetic machinery. Due to their reduced complexity and lack of evolved biochemical pathways, the capabilities of artificial cells are limited in comparison to their biological counterparts. We show that encapsulating living cells in vesicles provides a means for artificial cells to leverage cellular biochemistry, with the encapsulated cells serving organelle-like functions as living modules inside a larger synthetic cell assembly. Using microfluidic technologies to construct such hybrid cellular bionic systems, we demonstrate that the vesicle host and the encapsulated cell operate in concert. The external architecture of the vesicle shields the cell from toxic surroundings, while the cell acts as a bioreactor module that processes encapsulated feedstock which is further processed by a synthetic enzymatic metabolism co-encapsulated in the vesicle.

  • Journal article
    Jonas FRH, Royle KE, Aw R, Stan G, Polizzi KMet al., 2018,

    Investigating the consequences of asymmetric endoplasmic reticulum inheritance in Saccharomyces cerevisiae under stress using a combination of single cell measurements and mathematical modelling

    , Synthetic and Systems Biotechnology, Vol: 3, Pages: 64-75, ISSN: 2405-805X

    Adaptation allows organisms to maintain a constant internal environment, which is optimised for growth. The unfolded protein response (UPR) is an example of a feedback loop that maintains endoplasmic reticulum (ER) homeostasis, and is characteristic of how adaptation is often mediated by transcriptional networks. The more recent discovery of asymmetric division in maintaining ER homeostasis, however, is an example of how alternative non-transcriptional pathways can exist, but are overlooked by gold standard transcriptomic or proteomic population-based assays. In this study, we have used a combination of fluorescent reporters, flow cytometry and mathematical modelling to explore the relative roles of asymmetric cell division and the UPR in maintaining ER homeostasis. Under low ER stress, asymmetric division leaves daughter cells with an ER deficiency, necessitating activation of the UPR and prolonged cell cycle during which they can recover ER functionality before growth. Mathematical analysis of and simulation results from our mathematical model reinforce the experimental observations that low ER stress primarily impacts the growth rate of the daughter cells. These results demonstrate the interplay between homeostatic pathways and the importance of exploring sub-population dynamics to understand population adaptation to quantitatively different stresses.

  • Journal article
    Gang S, Sarah M, Waite C, Buck M, Schumacher Jet al., 2018,

    Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density

    , Plant and Soil, Vol: 424, Pages: 273-288, ISSN: 0032-079X

    AimsDianthus caryophyllus is a commercially important ornamental flower. Plant growth promoting rhizobacteria are increasingly applied as bio-fertilisers and bio-fortifiers. We studied the effect of a rhizospheric isolate Klebsiella SGM 81 strain to promote D. caryophyllus growth under sterile and non-sterile conditions, to colonise its root system endophytically and its impact on the cultivatable microbial community. We identified the auxin indole-3-acetic acid (IAA) production of Klebsiella SGM 81 as major bacterial trait most likely to enhance growth of D. caryophyllus.MethodsipdC dependent IAA production of SGM 81 was quantified using LC-MS/MS and localised proximal to D. caryophyllus roots and correlated to root growth promotion and characteristic morphological changes. SGM 81 cells were localised on and within the plant root using 3D rendering confocal microscopy of gfp expressing SGM 81. Using Salkowski reagent IAA production was quantified and localised proximal to roots in situ. The effect of different bacterial titres on rhizosphere bacterial population was CFU enumerated on nutrient agar. The genome sequence of Klebsiella SGM 81 (accession number PRJEB21197) was determined to validate PGP traits and phylogenic relationships.ResultsInoculation of D. caryophyllus roots with Klebsiella SGM 81 drastically promoted plant growth when grown in agar and soil, concomitant with a burst in root hair formation, suggesting an increase in root auxin activity. We sequenced the Klebsiella SGM 81 genome, identified the presence of a canonical ipdC gene in Klebsiella SGM 81, confirmed bacterial production and secretion of IAA in batch culture using LC-MS/MS and localised plant dependent IAA production by SGM 81 proximal to roots. We found Klebsiella SGM 81 to be a rhizoplane and endophytic coloniser of D. caryophyllus roots in a dose dependent manner. We found no adverse effects of SGM 81 on the overall rhizospheric microbial population unless supplied to soil in very high

  • Journal article
    Sainz de Murieta I, Bultelle M, Kitney R, 2018,

    Data model for biopart datasheets

    , Engineering Biology, Vol: 2, Pages: 7-18, ISSN: 2398-6182

    This study introduces a new data model, based on the DICOM-SB (see glossary of terms for definition of acronyms) standard for synthetic biology, that is capable of describing/incorporating the data, metadata and ancillary information from detailed characterisation experiments - to present DNA components (bioparts) in datasheets. The data model offers a standardised mechanism to associate bioparts with data and information about component performance - in a particular biological context (or a range of contexts, e.g. chassis). The data model includes the raw, experimental data for each characterisation run, and the protocol details needed to reliably reproduce the experiment. In addition, it provides metrics (e.g. relative promoter units, synthesis/growth rates etc.) that constitute the main content of a biopart datasheet. The data model has been developed to directly link to DICOM-SB, but also to be compatible with existing data standards, e.g. SBOL and SBML. It has been implemented within the latest version of the API that enables access to the SynBIS information system. The work should contribute significantly to the current standardisation effort in synthetic biology. The standard data model for datasheets is seen as a necessary step towards effective interoperability between part repositories, and between repositories and BioCAD applications.

  • Journal article
    Broedel AK, Isalan M, 2018,

    Trp-ing upon new repressors

    , Nature Chemical Biology, Vol: 14, Pages: 328-329, ISSN: 1552-4450

    Bioengineers have used directed evolution to generate a new family of synthetic transcription factors based on the tryptophan repressor. The evolved repressor family enables researchers to build new gene circuits for biomedical applications.

  • Journal article
    Goey CH, Bell D, Kontoravdi K, 2018,

    Mild hypothermic culture conditions impact residual host cell protein composition post-protein a chromatography

    , mAbs, Vol: 10, Pages: 476-487, ISSN: 1942-0862

    Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry experiment with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.

  • Journal article
    Mordaka PM, Heap JT, 2018,

    Stringency of Synthetic Promoter Sequences in Clostridium Revealed and Circumvented by Tuning Promoter Library Mutation Rates

    , ACS Synthetic Biology, Vol: 7, Pages: 672-681

    Collections of characterized promoters of different strengths are key resources for synthetic biology, but are not well established for many important organisms, including industrially relevant Clostridium spp. When generating promoters, reporter constructs are used to measure expression, but classical fluorescent reporter proteins are oxygen-dependent and hence inactive in anaerobic bacteria like Clostridium. We directly compared oxygen-independent reporters of different types in Clostridium acetobutylicum and found that glucuronidase (GusA) from E. coli performed best. Using GusA, a library of synthetic promoters was first generated by a typical approach entailing complete randomization of a constitutive thiolase gene promoter (Pthl) except for the consensus -35 and -10 elements. In each synthetic promoter, the chance of each degenerate position matching Pthl was 25%. Surprisingly, none of the tested synthetic promoters from this library were functional in C. acetobutylicum, even though they functioned as expected in E. coli. Next, instead of complete randomization, we specified lower promoter mutation rates using oligonucleotide primers synthesized using custom mixtures of nucleotides. Using these primers, two promoter libraries were constructed in which the chance of each degenerate position matching Pthl was 79% or 58%, instead of 25% as before. Synthetic promoters from these "stringent" libraries functioned well in C. acetobutylicum, covering a wide range of strengths. The promoters functioned similarly in the distantly related species Clostridium sporogenes, and allowed predictable metabolic engineering of C. acetobutylicum for acetoin production. Besides generating the desired promoters and demonstrating their useful properties, this work indicates an unexpected "stringency" of promoter sequences in Clostridium, not reported previously.

  • Journal article
    Heide C, Ces O, Polizzi K, Kontoravdi Cet al., 2018,

    Creating cell-free protein synthesis factories

    , Pharmaceutical Bioprocessing, Vol: 6, Pages: 3-6, ISSN: 2048-9145
  • Journal article
    Papathanos PA, Windbichler N, 2018,

    Redkmer: An assembly-free pipeline for the identification of abundant and specific X-chromosome target sequences for X-shredding by CRISPR endonucleases

    , The Crispr Journal, Vol: 1, Pages: 88-98, ISSN: 2573-1599

    CRISPR-based synthetic sex ratio distorters, which operate by shredding the X-chromosome during male meiosis, are promising tools for the area-wide control of harmful insect pest or disease vector species. X-shredders have been proposed as tools to suppress insect populations by biasing the sex ratio of the wild population toward males, thus reducing its natural reproductive potential. However, to build synthetic X-shredders based on CRISPR, the selection of gRNA targets, in the form of high-copy sequence repeats on the X chromosome of a given species, is difficult, since such repeats are not accurately resolved in genome assemblies and cannot be assigned to chromosomes with confidence. We have therefore developed the redkmer computational pipeline, designed to identify short and highly abundant sequence elements occurring uniquely on the X chromosome. Redkmer was designed to use as input minimally processed whole genome sequence data from males and females. We tested redkmer with short- and long-read whole genome sequence data of Anopheles gambiae, the major vector of human malaria, in which the X-shredding paradigm was originally developed. Redkmer established long reads as chromosomal proxies with excellent correlation to the genome assembly and used them to rank X-candidate kmers for their level of X-specificity and abundance. Among these, a high-confidence set of 25-mers was identified, many belonging to previously known X-chromosome repeats of Anopheles gambiae, including the ribosomal gene array and the selfish elements harbored within it. Data from a control strain, in which these repeats are shared with the Y chromosome, confirmed the elimination of these kmers during filtering. Finally, we show that redkmer output can be linked directly to gRNA selection and off-target prediction. In addition, the output of redkmer, including the prediction of chromosomal origin of single-molecule long reads and chromosome specific kmers, could also be used for the charact

  • Journal article
    Niehus X, Crutz-LeCoq A-M, Sandoval G, Nicaud J-M, Ledesma Amaro Ret al., 2018,

    Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials

    , Biotechnology for Biofuels, Vol: 11, ISSN: 1754-6834

    Background: Yarrowia lipolytica is a common biotechnological chassis for the production of lipids, which are the pre‑ferred feedstock for the production of fuels and chemicals. To reduce the cost of microbial lipid production, inexpen‑sive carbon sources must be used, such as lignocellulosic hydrolysates. Unfortunately, lignocellulosic materials oftencontain toxic compounds and a large amount of xylose, which cannot be used by Y. lipolytica.Results: In this work, we engineered this yeast to efciently use xylose as a carbon source for the productionof lipids by overexpressing native genes. We further increased the lipid content by overexpressing heterologousgenes to facilitate the conversion of xylose-derived metabolites into lipid precursors. Finally, we showed that theseengineered strains were able to grow and produce lipids in a very high yield (lipid content = 67%, titer = 16.5 g/L,yield = 3.44 g/g sugars, productivity 1.85 g/L/h) on a xylose-rich agave bagasse hydrolysate in spite of toxiccompounds.Conclusions: This work demonstrates the potential of metabolic engineering to reduce the costs of lipid productionfrom inexpensive substrates as source of fuels and chemicals.

  • Journal article
    Pothoulakis G, Ellis T, 2018,

    Synthetic gene regulation for independent external induction of the Saccharomyces cerevisiae pseudohyphal growth phenotype

    , Communications Biology, Vol: 1, ISSN: 2399-3642

    Pseudohyphal growth is a multicellular phenotype naturally performed by wild budding yeast cells in response to stress. Unicellular yeast cells undergo gross changes in their gene regulation and elongate to form branched filament structures consisting of connected cells. Here, we construct synthetic gene regulation systems to enable external induction of pseudohyphal growth in Saccharomyces cerevisiae. By controlling the expression of the natural PHD1 and FLO8 genes we are able to trigger pseudohyphal growth in both diploid and haploid yeast, even in different types of rich media. Using this system, we also investigate how members of the BUD gene family control filamentation in haploid cells. Finally, we employ a synthetic genetic timer network to control pseudohyphal growth and further explore the reversibility of differentiation. Our work demonstrates that synthetic regulation can exert control over a complex multigene phenotype and offers opportunities for rationally modifying the resulting multicellular structure.

  • Journal article
    Hazel P, Kroll SHB, Bondke A, Barbazanges M, Patel H, Fuchter MJ, Coombes RC, Ali S, Barrett AGM, Freemont PSet al., 2018,

    Corrigendum: Inhibitor selectivity for cyclin-dependent kinase 7: a structural, thermodynamic, and modelling study

    , ChemMedChem, Vol: 13, Pages: 207-207, ISSN: 1860-7187
  • Journal article
    Freemont PS, Salih O, He S, Planamente S, Stach L, MacDonald J, Manoli E, Scheres S, Filloux Aet al., 2018,

    Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa

    , Structure, Vol: 26, Pages: 329-336.e3, ISSN: 0969-2126

    Pseudomonas aeruginosa has three type VI secretion systems (T6SSs), H1-, H2-, and H3-T6SS, each belonging to a distinct group. The two T6SS components, TssB/VipA and TssC/VipB, assemble to form tubules that conserve structural/functional homology with tail sheaths of contractile bacteriophages and pyocins. Here, we used cryoelectron microscopy to solve the structure of the H1-T6SS P. aeruginosa TssB1C1 sheath at 3.3 Å resolution. Our structure allowed us to resolve some features of the T6SS sheath that were not resolved in the Vibrio cholerae VipAB and Francisella tularensis IglAB structures. Comparison with sheath structures from other contractile machines, including T4 phage and R-type pyocins, provides a better understanding of how these systems have conserved similar functions/mechanisms despite evolution. We used the P. aeruginosa R2 pyocin as a structural template to build an atomic model of the TssB1C1 sheath in its extended conformation, allowing us to propose a coiled-spring-like mechanism for T6SS sheath contraction.

  • Book chapter
    Lai H-E, Moore S, Polizzi K, Freemont Pet al., 2018,

    EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.

    , Pages: 429-444

    Development of advanced synthetic biology tools is always in demand since they act as a platform technology to enable rapid prototyping of biological constructs in a high-throughput manner. EcoFlex is a modular cloning (MoClo) kit for Escherichia coli and is based on the Golden Gate principles, whereby Type IIS restriction enzymes (BsaI, BsmBI, BpiI) are used to construct modular genetic elements (biological parts) in a bottom-up approach. Here, we describe a collection of plasmids that stores various biological parts including promoters, RBSs, terminators, ORFs, and destination vectors, each encoding compatible overhangs allowing hierarchical assembly into single transcription units or a full-length polycistronic operon or biosynthetic pathway. A secondary module cloning site is also available for pathway optimization, in order to limit library size if necessary. Here, we show the utility of EcoFlex using the violacein biosynthesis pathway as an example.

  • Journal article
    Khara DC, Schreck JS, Tomov TE, Berger Y, Ouldridge TE, Doye JPK, Nir Eet al., 2017,

    DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size

    , Nucleic Acids Research, Vol: 46, Pages: 1553-1561, ISSN: 0305-1048

    We present a detailed coarse-grained computer simulation and single molecule fluorescence study of the walking dynamics and mechanism of a DNA bipedal motor striding on a DNA origami. In particular, we study the dependency of the walking efficiency and stepping kinetics on step size. The simulations accurately capture and explain three different experimental observations. These include a description of the maximum possible step size, a decrease in the walking efficiency over short distances and a dependency of the efficiency on the walking direction with respect to the origami track. The former two observations were not expected and are non-trivial. Based on this study, we suggest three design modifications to improve future DNA walkers. Our study demonstrates the ability of the oxDNA model to resolve the dynamics of complex DNA machines, and its usefulness as an engineering tool for the design of DNA machines that operate in the three spatial dimensions.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=991&limit=20&page=15&respub-action=search.html Current Millis: 1715034244304 Current Time: Mon May 06 23:24:04 BST 2024