The publication feed below is often incomplete and out of date; for an up to date summary of our publications please see Google Scholar or Pub Med

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Ocasio CA, Baggelaar MP, Sipthorp J, Losada de la Lastra A, Tavares M, Volarić J, Soudy C, Storck EM, Houghton JW, Palma-Duran SA, MacRae JI, Tomić G, Carr L, Downward J, Eggert US, Tate EWet al., 2024,

    A palmitoyl transferase chemical-genetic system to map ZDHHC-specific S-acylation

    , Nature Biotechnology, Vol: 42, Pages: 1548-1558, ISSN: 1087-0156

    The 23 human zinc finger Asp-His-His-Cys motif-containing (ZDHHC) S-acyltransferases catalyze long-chain S-acylation at cysteine residues across an extensive network of hundreds of proteins important for normal physiology or dysregulated in disease. Here we present a technology to directly map the protein substrates of a specific ZDHHC at the whole-proteome level, in intact cells. Structure-guided engineering of paired ZDHHC 'hole' mutants and 'bumped' chemically tagged fatty acid probes enabled probe transfer to specific protein substrates with excellent selectivity over wild-type ZDHHCs. Chemical-genetic systems were exemplified for five human ZDHHCs (3, 7, 11, 15 and 20) and applied to generate de novo ZDHHC substrate profiles, identifying >300 substrates and S-acylation sites for new functionally diverse proteins across multiple cell lines. We expect that this platform will elucidate S-acylation biology for a wide range of models and organisms.

  • Journal article
    Draganov S, Gruet M, Conole D, Balcells C, Siskos A, Keun H, Haskard D, Tate Eet al., 2024,

    Chemical tools for profiling the intracellular ADP-ribosylated proteome

    , RSC Chemical Biology, Vol: 5, Pages: 640-651, ISSN: 2633-0679

    The post-translational modification (PTM) ADP-ribosylation plays an important role in cell signalling and regulating protein function and has been implicated in the development of multiple diseases, including breast and ovarian cancers. Studying the underlying mechanisms through which this PTM contributes towards disease development, however, has been hampered by the lack of appropriate tools for reliable identification of physiologically relevant ADP-ribosylated proteins in a live-cell environment. Herein, we explore the application of an alkyne-tagged proprobe, 6Yn-ProTide-Ad (6Yn-Pro) as a chemical tool for the identification of intracellular ADP-ribosylated proteins through metabolic labelling. We applied targeted metabolomics and chemical proteomics in HEK293T cells treated with 6Yn-Pro to demonstrate intracellular metabolic conversion of the probe into ADP-ribosylation cofactor 6Yn-NAD+, and subsequent labelling and enrichment of PARP1 and multiple known ADP-ribosylated proteins in cells under hydrogen peroxide-induced stress. We anticipate that the approach and methodology described here will be useful for future identification of novel intracellular ADP-ribosylated proteins.

  • Journal article
    Bakhshalizadeh S, Afkhami F, Bell KM, Robevska G, van den Bergen J, Cronin S, Jaillard S, Ayers KL, Kumar P, Siebold C, Xiao Z, Tate EW, Danaei S, Farzadi L, Shahbazi S, Sinclair AH, Tucker EJet al., 2024,

    Diverse genetic causes of amenorrhea in an ethnically homogeneous cohort and an evolving approach to diagnosis

    , Molecular and Cellular Endocrinology, Vol: 587, ISSN: 0303-7207

    RESEARCH QUESTION: Premature ovarian insufficiency (POI) is characterised by amenorrhea associated with elevated follicle stimulating hormone (FSH) under the age of 40 years and affects 1-3.7% women. Genetic factors explain 20-30% of POI cases, but most causes remain unknown despite genomic advancements. DESIGN: We used whole exome sequencing (WES) in four Iranian families, validated variants via Sanger sequencing, and conducted the Acyl-cLIP assay to measure HHAT enzyme activity. RESULTS: Despite ethnic homogeneity, WES revealed diverse genetic causes, including a novel homozygous nonsense variant in SYCP2L, impacting synaptonemal complex (SC) assembly, in the first family. Interestingly, the second family had two independent causes for amenorrhea - the mother had POI due to a novel homozygous loss-of-function variant in FANCM (required for chromosomal stability) and her daughter had primary amenorrhea due to a novel homozygous GNRHR (required for gonadotropic signalling) frameshift variant. WES analysis also provided cytogenetic insights. WES revealed one individual was in fact 46, XY and had a novel homozygous missense variant of uncertain significance in HHAT, potentially responsible for complete sex reversal although functional assays did not support impaired HHAT activity. In the remaining individual, WES indicated likely mosaic Turners with the majority of X chromosome variants having an allelic balance of ∼85% or ∼15%. Microarray validated the individual had 90% 45,XO. CONCLUSIONS: This study demonstrates the diverse causes of amenorrhea in a small, isolated ethnic cohort highlighting how a genetic cause in one individual may not clarify familial cases. We propose that, in time, genomic sequencing may become a single universal test required for the diagnosis of infertility conditions such as POI.

  • Journal article
    Tomić G, Sheridan C, Refermat AY, Baggelaar MP, Sipthorp J, Sudarshan B, Ocasio CA, Suárez-Bonnet A, Priestnall SL, Herbert E, Tate EW, Downward Jet al., 2024,

    Palmitoyl transferase ZDHHC20 promotes pancreatic cancer metastasis

    , Cell Reports, Vol: 43, ISSN: 2211-1247

    Metastasis is one of the defining features of pancreatic ductal adenocarcinoma (PDAC) that contributes to poor prognosis. In this study, the palmitoyl transferase ZDHHC20 was identified in an in vivo short hairpin RNA (shRNA) screen as critical for metastatic outgrowth, with no effect on proliferation and migration in vitro or primary PDAC growth in mice. This phenotype is abrogated in immunocompromised animals and animals with depleted natural killer (NK) cells, indicating that ZDHHC20 affects the interaction of tumor cells and the innate immune system. Using a chemical genetics platform for ZDHHC20-specific substrate profiling, a number of substrates of this enzyme were identified. These results describe a role for palmitoylation in enabling distant metastasis that could not have been detected using in vitro screening approaches and identify potential effectors through which ZDHHC20 promotes metastasis of PDAC.

  • Journal article
    Liang Z, Damianou A, Vendrell I, Jenkins E, Lassen FH, Washer SJ, Grigoriou A, Liu G, Yi G, Lou H, Cao F, Zheng X, Fernandes RA, Dong T, Tate EW, Di Daniel E, Kessler BMet al., 2024,

    Proximity proteomics reveals UCH-L1 as an essential regulator of NLRP3-mediated IL-1β production in human macrophages and microglia

    , Cell Reports, Vol: 43, ISSN: 2211-1247

    Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1β (IL-1β) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1β cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1β production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.

  • Journal article
    Mondal M, Cao F, Conole D, Auner H, Tate Eet al., 2024,

    Discovery of potent and selective activity-based probes (ABPs) for the deubiquitinating enzyme USP30

    , RSC Chemical Biology, Vol: 5, Pages: 439-446, ISSN: 2633-0679

    Ubiquitin-specific protease 30 (USP30) is a deubiquitinating enzyme (DUB) localized at the mitochondrial outer membrane and involved in PINK1/Parkin-mediated mitophagy, pexophagy, BAX/BAK-dependent apoptosis, and IKKβ-USP30-ACLY-regulated lipogenesis/tumorigenesis. A USP30 inhibitor, MTX652, has recently entered clinical trials as a potential treatment for mitochondrial dysfunction. Small molecule activity-based probes (ABPs) for DUBs have recently emerged as powerful tools for in-cell inhibitor screening and DUB activity analysis, and here, we report the first small molecule ABPs (IMP-2587 and IMP-2586) which can profile USP30 activity in cells. Target engagement studies demonstrate that IMP-2587 and IMP-2586 engage active USP30 at nanomolar concentration after only 10 min incubation time in intact cells, dependent on the presence of the USP30 catalytic cysteine. Interestingly, proteomics analyses revealed that DESI1 and DESI2, small ubiquitin-related modifier (SUMO) proteases, can also be engaged by these probes, further suggesting a novel approach to develop DESI ABPs.

  • Journal article
    Shah R, De Vita E, Sathyamurthi P, Conole D, Zhang X, Fellows E, Dickinson E, Fleites C, Queisser M, Harling J, Tate Eet al., 2024,

    Structure-guided design and optimization of covalent VHL-targeted sulfonyl fluoride PROTACs

    , Journal of Medicinal Chemistry, Vol: 67, Pages: 4641-4654, ISSN: 0022-2623

    Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have emerged as a therapeutic modality to induce targeted protein degradation (TPD) by harnessing cellular proteolytic degradation machinery. PROTACs which ligand the E3 ligase in a covalent manner have attracted intense interest, however, covalent PROTACs with a broad protein of interest (POI) scope have proven challenging to discover by design. Here, we report structure-guided design and optimization of Von Hippel-Lindau (VHL) protein-targeted sulfonyl fluorides which covalently bind Ser110 in the HIF1α binding site. We demonstrate that their incorporation in bifunctional degraders induces targeted protein degradation of BRD4 or androgen receptor (AR) without further linker optimization. Our study discloses the first covalent VHL ligands which can be implemented directly in bifunctional degrader design expanding the substrate scope of covalent E3 ligase PROTACs.

  • Journal article
    Conole D, Cao F, Am Ende CW, Xue L, Kantesaria S, Kang D, Jin J, Owen D, Lohr L, Schenone M, Majmudar JD, Tate EWet al., 2023,

    Discovery of a potent deubiquitinase (DUB) small molecule activity‐based probe enables broad spectrum DUB activity profiling in living cells

    , Angewandte Chemie International Edition, Vol: 62, ISSN: 1433-7851

    Deubiquitinases (DUBs) are a family of >100 proteases that hydrolyze isopeptide bonds linking ubiquitin to protein substrates. This leads to reduced substrate degradation through the ubiquitin proteasome system. Deregulation of DUB activity has been implicated in many diseases, including cancer, neurodegeneration and auto-inflammation, and several have been recognized as attractive targets for therapeutic intervention. Ubiquitin-derived covalent activity-based probes (ABPs) provide a powerful tool for DUB activity profiling, but their large recognition element impedes cellular permeability and presents an unmet need for small molecule ABPs which can account for regulation of DUB activity in intact cells or organisms. Here, through comprehensive chemoproteomic warhead profiling, we identify cyanopyrrolidine (CNPy) probe IMP-2373 (12) as a small molecule pan-DUB ABP to monitor DUB activity in physiologically relevant live cells. Through proteomics and targeted assays, we demonstrate that IMP-2373 quantitatively engages more than 35 DUBs across a range of non-toxic concentrations in diverse cell lines. We further demonstrate its application to quantification of changes in intracellular DUB activity during pharmacological inhibition and during MYC deregulation in a model of B cell lymphoma. IMP-2373 thus offers a complementary tool to ubiquitin ABPs to monitor dynamic DUB activity in the context of disease-relevant phenotypes.

  • Journal article
    Huang X, Yao J, Liu L, Chen J, Mei L, Huangfu J, Luo D, Wang X, Lin C, Chen X, Yang Y, Ouyang S, Wei F, Wang Z, Zhang S, Xiang T, Neculai D, Sun Q, Kong E, Tate EW, Yang Aet al., 2023,

    S-acylation of p62 promotes p62 droplet recruitment into autophagosomes in mammalian autophagy

    , Molecular Cell, Vol: 83, Pages: 3485-3501.E11, ISSN: 1097-2765

    p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.

  • Journal article
    White MEH, Gil J, Tate EW, 2023,

    Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics

    , Cell Chemical Biology, Vol: 30, Pages: 828-838.e4, ISSN: 2451-9456

    Covalent drug discovery has undergone a resurgence over the past two decades and reactive cysteine profiling has emerged in parallel as a platform for ligand discovery through on- and off-target profiling; however, the scope of this approach has not been fully explored at the whole-proteome level. We combined AlphaFold2-predicted side-chain accessibilities for >95% of the human proteome with a meta-analysis of eighteen public cysteine profiling datasets, totaling 44,187 unique cysteine residues, revealing accessibility biases in sampled cysteines primarily dictated by warhead chemistry. Analysis of >3.5 million cysteine-fragment interactions further showed that hit elaboration and optimization drives increased bias against buried cysteine residues. Based on these data, we suggest that current profiling approaches cover a small proportion of potential ligandable cysteine residues and propose future directions for increasing coverage, focusing on high-priority residues and depth. All analysis and produced resources are freely available and extendable to other reactive amino acids.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=870&limit=10&page=1&respub-action=search.html Current Millis: 1733223180884 Current Time: Tue Dec 03 10:53:00 GMT 2024

Contact

Prof. Ed Tate
GSK Chair in Chemical Biology
Department of Chemistry
Molecular Sciences Research Hub, White City Campus,
82 Wood Lane, London, W12 0BZ

e.tate@imperial.ac.uk
Tel: +44 (0)20 759 + ext 43752 or 45821