BibTex format
@article{Chester:2025:10.1103/vqss-l6f9,
author = {Chester, SM and Su, N},
doi = {10.1103/vqss-l6f9},
journal = {Physical Review D},
title = {Upper critical dimension of the 3-state Potts model},
url = {http://dx.doi.org/10.1103/vqss-l6f9},
volume = {111},
year = {2025}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - <jats:p>We consider the 3-state Potts model in <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mi>d</a:mi><a:mo>≥</a:mo><a:mn>2</a:mn></a:math> dimensions. For <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mi>d</c:mi></c:math> less than the upper critical dimension <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:msub><e:mi>d</e:mi><e:mrow><e:mi>crit</e:mi></e:mrow></e:msub></e:math>, the model has a critical and a tricritical fixed point. In <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" display="inline"><g:mi>d</g:mi><g:mo>=</g:mo><g:mn>2</g:mn></g:math>, these fixed points are described by minimal models, and so are exactly solvable. For <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mi>d</i:mi><i:mo>></i:mo><i:mn>2</i:mn></i:math>, however, strong coupling makes them difficult to study and there is no consensus on the value of <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:msub><k:mi>d</k:mi><k:mrow><k:mi>crit</k:mi></k:mrow></k:msub></k:math>. We use the numerical conformal bootstrap to compute critical exponents of both the critical and tricritical fixed points for general <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mi>d</m:mi></m:math>. In <o:math xmlns:o="http://www.w3.org/1998/Math/MathML" display="inline"><o:mi>d</o:mi><o:mo>=</o:mo><o:mn>2</o:mn></o:math> our results ma
AU - Chester,SM
AU - Su,N
DO - 10.1103/vqss-l6f9
PY - 2025///
SN - 2470-0010
TI - Upper critical dimension of the 3-state Potts model
T2 - Physical Review D
UR - http://dx.doi.org/10.1103/vqss-l6f9
UR - https://doi.org/10.1103/vqss-l6f9
VL - 111
ER -