BibTex format
@article{Liu:2025:1361-6382/ae1b60,
author = {Liu, X and Reall, HS and Santos, JE and Wiseman, T},
doi = {1361-6382/ae1b60},
journal = {Classical and Quantum Gravity},
pages = {235003--235003},
title = {Ill-posedness of the Cauchy problem for linearized gravity in a cavity with conformal boundary conditions},
url = {http://dx.doi.org/10.1088/1361-6382/ae1b60},
volume = {42},
year = {2025}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - <jats:title>Abstract</jats:title> <jats:p> We consider Lorentzian general relativity in a cavity with a timelike boundary, with conformal boundary conditions and also a generalization of these boundary conditions. We focus on the linearized gravitational dynamics about the static empty cavity whose boundary has spherical spatial geometry. It has been recently shown that there exist dynamical instabilities, whose angular dependence is given in terms of spherical harmonics <jats:inline-formula> <jats:tex-math> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:msub> <mml:mi>Y</mml:mi> <mml:mrow> <mml:mi></mml:mi> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , and whose coefficient of exponential growth in time goes as <jats:inline-formula> <jats:tex-math> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mo>∼</mml:mo> <mml:msup> <mml:mi></mml:mi> <mml:mrow> <mml:mn>1</mml:mn>
AU - Liu,X
AU - Reall,HS
AU - Santos,JE
AU - Wiseman,T
DO - 1361-6382/ae1b60
EP - 235003
PY - 2025///
SN - 0264-9381
SP - 235003
TI - Ill-posedness of the Cauchy problem for linearized gravity in a cavity with conformal boundary conditions
T2 - Classical and Quantum Gravity
UR - http://dx.doi.org/10.1088/1361-6382/ae1b60
UR - https://doi.org/10.1088/1361-6382/ae1b60
VL - 42
ER -