Citation

BibTex format

@article{Liu:2025:1361-6382/ae1b60,
author = {Liu, X and Reall, HS and Santos, JE and Wiseman, T},
doi = {1361-6382/ae1b60},
journal = {Classical and Quantum Gravity},
pages = {235003--235003},
title = {Ill-posedness of the Cauchy problem for linearized gravity in a cavity with conformal boundary conditions},
url = {http://dx.doi.org/10.1088/1361-6382/ae1b60},
volume = {42},
year = {2025}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - <jats:title>Abstract</jats:title> <jats:p> We consider Lorentzian general relativity in a cavity with a timelike boundary, with conformal boundary conditions and also a generalization of these boundary conditions. We focus on the linearized gravitational dynamics about the static empty cavity whose boundary has spherical spatial geometry. It has been recently shown that there exist dynamical instabilities, whose angular dependence is given in terms of spherical harmonics <jats:inline-formula> <jats:tex-math> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:msub> <mml:mi>Y</mml:mi> <mml:mrow> <mml:mi></mml:mi> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , and whose coefficient of exponential growth in time goes as <jats:inline-formula> <jats:tex-math> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mo>∼</mml:mo> <mml:msup> <mml:mi></mml:mi> <mml:mrow> <mml:mn>1</mml:mn>
AU - Liu,X
AU - Reall,HS
AU - Santos,JE
AU - Wiseman,T
DO - 1361-6382/ae1b60
EP - 235003
PY - 2025///
SN - 0264-9381
SP - 235003
TI - Ill-posedness of the Cauchy problem for linearized gravity in a cavity with conformal boundary conditions
T2 - Classical and Quantum Gravity
UR - http://dx.doi.org/10.1088/1361-6382/ae1b60
UR - https://doi.org/10.1088/1361-6382/ae1b60
VL - 42
ER -

Note to staff:  Adding new publications to a research group

  1. Log in to Symplectic.
  2. Click on Menu > Create Links
  3. Choose what you want to create links between – in this case ‘Publications’ and ‘Organisational structures’.
  4. Choose the organisational structure (research group) into which you want to link the publications and check the box next to it.
  5. Now check the box of any publication you want to add to that group. You can use the filters to find what you want and select multiple publications if necessary. 
  6. Scroll to the bottom and click the blue ‘Create new link’ button to link them.
  7. The publications will be added to the group, and will be displayed on the group publications feed within 24 hours (it is not immediate).

Any problems, talk to Tim Evans or the Faculty Web Team.