Escalating concerns over environmental degradation and global energy crises pose critical challenges to building a sustainable society. In this context, the development of next-generation electrochemical energy storage technologies is essential for portable electronics, vehicle electrification, smart grids, and emerging bioelectronic systems 1,2.

At the core of these advancements lies the rational design of electrochemical interfaces, which are pivotal in enhancing device performance, safety, and efficiency. Equally important are innovations in electrochemical monitoring techniques, particularly those with high spatial and temporal resolution, which enable deeper insights into ion transport, interfacial dynamics, and reaction kinetics, thereby accelerating the development of advanced energy storage technologies 3.

To achieve these goals, we design microdevices and multimodal on-chip platforms for in situ/operando electrochemical characterisation, enabling rapid screening and mechanistic insights across energy storage and electrocatalytic systems 4-6. We also investigate structure–property relationships in electrode materials, rapid thermal processing strategies, and high-rate electrochemical mechanisms to achieve fast charging, high energy density, and long-term stability 7-11.

Beyond large-scale applications, our group develops miniature bio-safe energy storage devices for reliable operation in biological environments. These efforts inform the design of micro-power sources and mechanically compliant batteries and supercapacitors, including self-powered energy storage devices such as photo-rechargeable and wireless-rechargeable systems, that can be seamlessly integrated into wearable, implantable, and soft robotic platforms 12-14. Ultimately, these innovations advance sustainability, next-generation electronics, and healthcare technologies.

Representative publications:

  1. L. Mai, X. Tian, Y. Zhao, Air taxis will soon be in our skies—if batteries can be made safer. Nature 645 (2025), 36–38.
  2. Y. Zhao, H. Du, Y. Kang, J. Zhang, B. Lan, Z. Guo, M.-M. Titirici, Y. Zhao, N. Tavajohi, F. Kang, B. Li, Spent battery regeneration for better recycling. Nat. Rev. Mater. 10 (2025), 722–724.
  3. L. Mai, M. Yan, Y. Zhao, Track batteries degrading in real-time. Nature 546 (2017), 469.
  4. M. Wang, K. Yang, Y. Ji, X. Liao, G. Zhang, M. G. Masteghin, N. Peng, F. Richheimer, H. Li, J. Wang, X. Liu, S. Yang, E. Petrucco, P. Shearing, F. A. Castro, S. R. P. Silva, Y. Zhao, F. Pan, Y. Zhao*, Developing highly reversible Li–CO₂ battery: from on-chip exploration to practical application. Energy Environ. Sci. 16 (2023), 3960.
  5. X. Pan, M. Yan, Q. Liu, X. Zhou, X. Liao, C. Sun, J. Zhu, C. McAleese, P. Couture, M. K. Sharpe, R. Smith, N. Peng, J. England, S. C. E. Tsang, Y. Zhao, L. Mai, Electric-field-assisted proton coupling enhanced oxygen evolution reaction. Nat. Commun. 15 (2024), 3354.
  6. X. Yao, X. Lu, Y. Zhou, T. Šamořil, J. Bi, M. G. Masteghin, H. Zhang, L. Askew, J. W. Kim, F. Xiong, J. Wang, D. Cox, T. Sui, I. Gilmore, S. R. P. Silva, L. Mai, G. Hinds, P. Shearing, J. Park, Y. Zhao*, Rectifying interphase for preventing Li dendrite propagation in solid-state electrolytes. Energy Environ. Sci. 16 (2023), 2167–2176.
  7. H. Li, Y. Gong, H. Zhou, J. Li, K. Yang, B. Mao, J. Zhang, Y. Shi, J. Deng, M. Mao, Z. Huang, S. Jiao, Y. Kuang, Y. Zhao, S. Luo, Ampere-hour-scale soft-package potassium-ion hybrid capacitors enabling 6-minute fast-charging. Nat. Commun. 14 (2023), 6407.
  8. X. Yao, T. Šamořil, J. Dluhoš, J. F. Watts, Z. Du, B. Song, S. R. P. Silva, T. Sui, Y. Zhao, Degradation diagnostics from the subsurface of lithium-ion battery electrodes. Energy Environ. Mater. 5 (2022), 662–669.
  9. Y. Zhao, C. Han, J. Yang, J. Su, X. Xu, S. Li, L. Xu, R. Fang, H. Jiang, X. Zou, B. Song, L. Mai, Q. Zhang, Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries. Nano Lett. 15 (2015), 2180–2185.
  10. Y. Zhao, J. Feng, X. Liu, F. Wang, L. Wang, C. Shi, L. Huang, X. Feng, X. Chen, L. Xu, M. Yan, Q. Zhang, X. Bai, H. Wu, L. Mai, Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nat. Commun. 5 (2014).
  11. Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, Q. Zhang, Hierarchical mesoporous perovskite La₀.₅Sr₀.₅CoO₂.₉₁ nanowires with ultrahigh capacity for Li–air batteries. PNAS 109 (2012), 19569–19574.
  12. J. Bi, S. Li, D. Liu, B. Li, K. Yang, M. Xu, C. Fu, Y. Zhao, W. Zhang, Highly integrated perovskite solar cells-based photorechargeable system with excellent photoelectric conversion and energy storage ability. Energy Environ. Mater. 7 (2024), e12728.
  13. M. Xu, Y. Liu, K. Yang, S. Li, J. Wang, D. Yang, M. Shkunov, F. A. Castro, S. R. P. Silva, Y. Zhao*, Recent progress in minimally invasive power sources for implantable electronics. Exploration 4 (2024), 20220106.
  14. J. Bi, J. Zhang, P. Giannakou, T. Wickramanayake, X. Yao, M. Wang, X. Liu, M. Shkunov, W. Zhang, Y. Zhao, A highly integrated flexible photo-rechargeable system based on stable ultrahigh-rate quasi-solid-state zinc-ion micro-batteries and perovskite solar cells. Energy Storage Mater. 51 (2022), 239–248.