Notable Recent Publications

These are some recent publications which give a flavour of the research from the Barclay lab. For a complete list of publications, please see below.

Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature (2016).
Jason S. Long, Efstathios S. Giotis, Olivier Moncorgé, Rebecca Frise, Bhakti Mistry, Joe James, Mireille Morisson, Munir Iqbal, Alain Vignal, Michael A. Skinner & Wendy S. Barclay

This paper identified a key factor that explained why the polymerases from avian influenza viruses are restricted in humans.  For more, please see the associated New and Views.

See our latest ANP32 papers here: eLIFE, Journal of Virology, Journal of Virology.

The mechanism of resistance to favipiravir in influenza. PNAS (2018).
Daniel H. GoldhillAartjan J. W. te VelthuisRobert A. FletcherPinky LangatMaria ZambonAngie Lackenby & Wendy S. Barclay

This paper showed how influenza could evolve resistance to favipiravir, an antiviral that may be used to treat influenza. The residue that mutated to give resistance was highly conserved suggesting that the mechanism of resistance may be applicable to other RNA viruses.

Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. Plos Path. (2018).
Hui Li*, Konrad C. Bradley*, Jason S. Long, Rebecca Frise, Jonathan W. Ashcroft, Lorian C. Hartgroves, Holly Shelton, Spyridon Makris, Cecilia Johansson, Bin Cao & Wendy S. Barclay

Why do avian influenza viruses like H5N1 cause such severe disease in humans? This paper demonstrated that H5N1 viruses replicate better than human viruses in myeloid cells from mice leading to a cytokine storm and more severe disease.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Prendecki M, Clarke C, Brown J, Cox A, Gleeson S, Guckian M, Randell P, Pria AD, Lightstone L, Xu X-N, Barclay W, McAdoo SP, Kelleher P, Willicombe Met al., 2021,

    Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine

    , The Lancet, Vol: 397, Pages: 1178-1181, ISSN: 0140-6736
  • Journal article
    Rodriguez-Manzano J, Malpartida-Cardenas K, Moser N, Pennisi I, Cavuto M, Miglietta L, Moniri A, Penn R, Satta G, Randell P, Davies F, Bolt F, Barclay W, Holmes A, Georgiou Pet al., 2021,

    Handheld point-of-care system for rapid detection of SARS-CoV-2 extracted RNA in under 20 min

    , ACS Central Science, Vol: 7, Pages: 307-317, ISSN: 2374-7943

    The COVID-19 pandemic is a global health emergency characterized by the high rate of transmission and ongoing increase of cases globally. Rapid point-of-care (PoC) diagnostics to detect the causative virus, SARS-CoV-2, are urgently needed to identify and isolate patients, contain its spread and guide clinical management. In this work, we report the development of a rapid PoC diagnostic test (<20 min) based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and semiconductor technology for the detection of SARS-CoV-2 from extracted RNA samples. The developed LAMP assay was tested on a real-time benchtop instrument (RT-qLAMP) showing a lower limit of detection of 10 RNA copies per reaction. It was validated against extracted RNA from 183 clinical samples including 127 positive samples (screened by the CDC RT-qPCR assay). Results showed 91% sensitivity and 100% specificity when compared to RT-qPCR and average positive detection times of 15.45 ± 4.43 min. For validating the incorporation of the RT-LAMP assay onto our PoC platform (RT-eLAMP), a subset of samples was tested (n = 52), showing average detection times of 12.68 ± 2.56 min for positive samples (n = 34), demonstrating a comparable performance to a benchtop commercial instrument. Paired with a smartphone for results visualization and geolocalization, this portable diagnostic platform with secure cloud connectivity will enable real-time case identification and epidemiological surveillance.

  • Journal article
    Ward H, Atchison C, Whitaker M, Ainslie KEC, Elliott J, Okell L, Redd R, Ashby D, Donnelly C, Barclay W, Darzi A, Cooke G, Riley S, Elliott Pet al., 2021,

    SARS-CoV-2 antibody prevalence in England following the first peak of the pandemic.

    , Nature Communications, Vol: 12, Pages: 1-8, ISSN: 2041-1723

    England has experienced a large outbreak of SARS-CoV-2, disproportionately affecting people from disadvantaged and ethnic minority communities. It is unclear how much of this excess is due to differences in exposure associated with structural inequalities. Here we report from the REal-time Assessment of Community Transmission-2 (REACT-2) national study of over 100,000 people. After adjusting for test characteristics and re-weighting to the population, overall antibody prevalence is 6.0% (95% CI: 5.8-6.1). An estimated 3.4 million people had developed antibodies to SARS-CoV-2 by mid-July 2020. Prevalence is two- to three-fold higher among health and care workers compared with non-essential workers, and in people of Black or South Asian than white ethnicity, while age- and sex-specific infection fatality ratios are similar across ethnicities. Our results indicate that higher hospitalisation and mortality from COVID-19 in minority ethnic groups may reflect higher rates of infection rather than differential experience of disease or care.

  • Report
    Riley S, Walters C, Wang H, Eales O, Ainslie K, Atchison C, Fronterre C, Diggle PJ, Ashby D, Donnelly C, Cooke G, Barclay W, Ward H, Darzi A, Elliott Pet al., 2020,

    REACT-1 round 7 updated report: regional heterogeneity in changes in prevalence of SARS-CoV-2 infection during the second national COVID-19 lockdown in England

    , REACT-1 round 7 updated report: regional heterogeneity in changes in prevalence of SARS-CoV-2 infection during the second national COVID-19 lockdown in England, London, Publisher: Imperial College London

    BackgroundEngland exited a four-week second national lockdown on 2nd December 2020 initiated in response to the COVID-19 pandemic. Prior results showed that prevalence dropped during the first half of lockdown, with greater reductions in higher-prevalence northern regions.MethodsREACT-1 is a series of community surveys of SARS-CoV-2 RT-PCR swab-positivity in England, designed to monitor the spread of the epidemic and thus increase situational awareness. Round 7 of REACT-1 commenced swab-collection on 13th November 2020. A prior interim report included data from 13th to 24th November 2020 for 105,122 participants. Here, we report data for the entire round with swab results obtained up to 3rd December 2020.ResultsBetween 13th November and 3rd December (round 7) there were 1,299 positive swabs out of 168,181 giving a weighted prevalence of 0.94% (95% CI 0.87%, 1.01%) or 94 per 10,000 people infected in the community in England. This compares with a prevalence of 1.30% (1.21%, 1.39%) from 16th October to 2nd November 2020 (round 6), a decline of 28%. Prevalence during the latter half of round 7 was 0.91% (95% CI, 0.81%, 1.03%) compared with 0.96% (0.87%, 1.05%) in the first half. The national R number in round 7 was estimated at 0.96 (0.88, 1.03) with a decline in prevalence observed during the first half of this period no longer apparent during the second half at the end of lockdown. During round 7 there was a marked fall in prevalence in West Midlands, a levelling off in some regions and a rise in London. R numbers at regional level ranged from 0.60 (0.41, 0.80) in West Midlands up to 1.27 (1.04, 1.54) in London, where prevalence was highest in the east and south-east of the city. Nationally, between 13th November and 3rd December, the highest prevalence was in school-aged children especially at ages 13-17 years at 2.04% (1.69%, 2.46%), or approximately 1 in 50.ConclusionBetween the previous round and round 7 (during lockdown), there was a fall in prevalence of SARS-C

  • Journal article
    Yan AWC, Zhou J, Beauchemin CAA, Russell CA, Barclay WS, Riley Set al., 2020,

    Quantifying mechanistic traits of influenza viral dynamics using in vitro data.

    , Epidemics: the journal of infectious disease dynamics, Vol: 33, Pages: 1-10, ISSN: 1755-4365

    When analysing in vitro data, growth kinetics of influenza virus strains are often compared by computing their growth rates, which are sometimes used as proxies for fitness. However, analogous to mathematical models for epidemics, the growth rate can be defined as a function of mechanistic traits: the basic reproduction number (the average number of cells each infected cell infects) and the mean generation time (the average length of a replication cycle). Fitting a model to previously published and newly generated data from experiments in human lung cells, we compared estimates of growth rate, reproduction number and generation time for six influenza A strains. Of four strains in previously published data, A/Canada/RV733/2003 (seasonal H1N1) had the lowest basic reproduction number, followed by A/Mexico/INDRE4487/2009 (pandemic H1N1), then A/Indonesia/05/2005 (spill-over H5N1) and A/Anhui/1/2013 (spill-over H7N9). This ordering of strains was preserved for both generation time and growth rate, suggesting a positive biological correlation between these quantities which have not been previously observed. We further investigated these potential correlations using data from reassortant viruses with different internal proteins (from A/England/195/2009 (pandemic H1N1) and A/Turkey/05/2005 (H5N1)), and the same surface proteins (from A/Puerto Rico/8/34 (lab-adapted H1N1)). Similar correlations between traits were observed for these viruses, confirming our initial findings and suggesting that these patterns were related to the degree of human adaptation of internal genes. Also, the model predicted that strains with a smaller basic reproduction number, shorter generation time and slower growth rate underwent more replication cycles by the time of peak viral load, potentially accumulating mutations more quickly. These results illustrate the utility of mathematical models in inferring traits driving observed differences in in vitro growth of influenza strains.

  • Journal article
    Carrique L, Fan H, Walker AP, Keown JR, Sharps J, Staller E, Barclay WS, Fodor E, Grimes JMet al., 2020,

    Host ANP32A mediates the assembly of the influenza virus replicase

    , Nature, Vol: 587, Pages: 638-643, ISSN: 0028-0836

    Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge1. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes2,3. RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity4. Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.

  • Journal article
    Ahmetaj-Shala B, Peacock TP, Baillon L, Swann OC, Gashaw H, Barclay WS, Mitchell JAet al., 2020,

    Resistance of endothelial cells to SARS-CoV-2 infection in vitro

    <jats:title>Abstract</jats:title><jats:sec><jats:title>Rationale</jats:title><jats:p>The secondary thrombotic/vascular clinical syndrome of COVID-19 suggests that SARS-CoV-2 infects not only respiratory epithelium but also the endothelium activating thrombotic pathways, disrupting barrier function and allowing access of the virus to other organs of the body. However, a direct test of susceptibility to SARS-CoV-2 of authentic endothelial cell lines has not been performed.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>To determine infectibility of primary endothelial cell lines with live SARS-CoV-2 and pseudoviruses expressing SARS-CoV-2 spike protein.</jats:p></jats:sec><jats:sec><jats:title>Methods and Results</jats:title><jats:p>Expression of ACE2 and BSG pathways genes was determined in three types of endothelial cells; blood outgrowth, lung microvascular and aortic endothelial cells. For comparison nasal epithelial cells, Vero E6 cells (primate kidney fibroblast cell line) and HEK 293T cells (human embryonic kidney cells) transfected with either ACE2 or BSG were used as controls. Endothelial and Vero E6 cells were treated with live SARS-CoV-2 virus for 1 hour and imaged at 24 and 72 hours post infection. Pseudoviruses containing SARS-CoV-2, Ebola and Vesicular Stomatis Virus glycoproteins were generated and added to endothelial cells and HEK 239Ts for 2 hours and infection measured using luminescence at 48 hours post infection. Compared to nasal epithelial cells, endothelial cells expressed low or undetectable levels of ACE2 and TMPRSS2 but comparable levels of BSG, PPIA and PPIB. Endothelial cells showed no susceptibility to live SARS-CoV-2 or SARS-CoV-2 pseudovirus (but showed susceptibility to Ebola and Vesicular Stomatitis Virus). Overexpression of ACE2 but not BSG in HEK 239T cells conferred SARS-CoV-2 pseudovirus entry. Endoth

  • Journal article
    Gibani MM, Toumazou C, Sohbati M, Sahoo R, Karvela M, Hon T-K, De Mateo S, Burdett A, Leung KYF, Barnett J, Orbeladze A, Luan S, Pournias S, Sun J, Flower B, Bedzo-Nutakor J, Amran M, Quinlan R, Skolimowska K, Herrera C, Rowan A, Badhan A, Klaber R, Davies G, Muir D, Randell P, Crook D, Taylor GP, Barclay W, Mughal N, Moore LSP, Jeffery K, Cooke GSet al., 2020,

    Assessing a novel, lab-free, point-of-care test for SARS-CoV-2 (CovidNudge): a diagnostic accuracy study.

    , The Lancet Microbe, Vol: 1, Pages: e300-e307, ISSN: 2666-5247

    Background: Access to rapid diagnosis is key to the control and management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory RT-PCR testing is the current standard of care but usually requires a centralised laboratory and significant infrastructure. We describe our diagnostic accuracy assessment of a novel, rapid point-of-care real time RT-PCR CovidNudge test, which requires no laboratory handling or sample pre-processing. Methods: Between April and May, 2020, we obtained two nasopharyngeal swab samples from individuals in three hospitals in London and Oxford (UK). Samples were collected from three groups: self-referred health-care workers with suspected COVID-19; patients attending emergency departments with suspected COVID-19; and hospital inpatient admissions with or without suspected COVID-19. For the CovidNudge test, nasopharyngeal swabs were inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as sample adequacy control. Swab samples were tested in parallel using the CovidNudge platform, and with standard laboratory RT-PCR using swabs in viral transport medium for processing in a central laboratory. The primary analysis was to compare the sensitivity and specificity of the point-of-care CovidNudge test with laboratory-based testing. Findings: We obtained 386 paired samples: 280 (73%) from self-referred health-care workers, 15 (4%) from patients in the emergency department, and 91 (23%) hospital inpatient admissions. Of the 386 paired samples, 67 tested positive on the CovidNudge point-of-care platform and 71 with standard laboratory RT-PCR. The overall sensitivity of the point-of-care test compared with laboratory-based testing was 94% (95% CI 86-98) with an overall specificity of 100% (99-100). The sensitivity of the test varied

  • Journal article
    Neil D, Moran L, Horsfield C, Curtis E, Swann O, Barclay W, Hanley B, Hollinshead M, Roufosse Cet al., 2020,

    Ultrastructure of cell trafficking pathways and coronavirus: how to recognise the wolf amongst the sheep

    , JOURNAL OF PATHOLOGY, Vol: 252, Pages: 346-357, ISSN: 0022-3417
  • Journal article
    Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, Thursz M, Manousou P, Corbett R, Goldin R, Al-Sarraj S, Abdolrasouli A, Swann OC, Baillon L, Penn R, Barclay WS, Viola P, Osborn Met al., 2020,

    Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study

    , The Lancet Microbe, Vol: 1, Pages: e245-e253, ISSN: 2666-5247

    BackgroundSevere COVID-19 has a high mortality rate. Comprehensive pathological descriptions of COVID-19 are scarce and limited in scope. We aimed to describe the histopathological findings and viral tropism in patients who died of severe COVID-19.MethodsIn this case series, patients were considered eligible if they were older than 18 years, with premortem diagnosis of severe acute respiratory syndrome coronavirus 2 infection and COVID-19 listed clinically as the direct cause of death. Between March 1 and April 30, 2020, full post-mortem examinations were done on nine patients with confirmed COVID-19, including sampling of all major organs. A limited autopsy was done on one additional patient. Histochemical and immunohistochemical analyses were done, and histopathological findings were reported by subspecialist pathologists. Viral quantitative RT-PCR analysis was done on tissue samples from a subset of patients.FindingsThe median age at death of our cohort of ten patients was 73 years (IQR 52–79). Thrombotic features were observed in at least one major organ in all full autopsies, predominantly in the lung (eight [89%] of nine patients), heart (five [56%]), and kidney (four [44%]). Diffuse alveolar damage was the most consistent lung finding (all ten patients); however, organisation was noted in patients with a longer clinical course. We documented lymphocyte depletion (particularly CD8-positive T cells) in haematological organs and haemophagocytosis. Evidence of acute tubular injury was noted in all nine patients examined. Major unexpected findings were acute pancreatitis (two [22%] of nine patients), adrenal micro-infarction (three [33%]), pericarditis (two [22%]), disseminated mucormycosis (one [10%] of ten patients), aortic dissection (one [11%] of nine patients), and marantic endocarditis (one [11%]). Viral genomes were detected outside of the respiratory tract in four of five patients. The presence of subgenomic viral RNA transcripts provided evidence of

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1017&limit=10&respub-action=search.html Current Millis: 1620473256406 Current Time: Sat May 08 12:27:36 BST 2021