Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Zhou Z, Whittaker A, Bell R, Hampson Get al., 2024,

    Unravelling tectonic and lithological effects on transient landscapes in the Gulf of Corinth, Greece

    , Basin Research, Vol: 36, ISSN: 0950-091X

    Landscapes are the integrated product of external forcings (e.g. tectonics and climate) and intrinsic characteristics (e.g. bedrock erodibility). In principle, hardbedrock with low erodibility can steepen rivers in a similar way to tectonic uplift. A key challenge in geomorphic analysis is thus separating the tectonic and lithologicaleffects on landscapes. To address this, we focus on multiple rivers that are transiently incising through contrasting lithologies in the Gulf of Corinth, Greece,where tectonic history is broadly well constrained. We first exploit topographic metrics and river long profiles to demonstrate that landscapes are responding to both tectonics and lithology. In particular, the long profiles are divided into knickpoint-bounded segments, and at this scale, channel steepness is shown to be more sensitive to lithology than the entire catchment, possibly due to relatively uniform erosion rate at the segment scale. We then use segment-scale steepness variations between different lithologies to constrain their relative erodibilities(Klime:Kcong.:Ksand-silt: Kp-con sed. = 1:2:3:4), which are further converted into actual lithology-dependent erodibilities by modelling a well-constrained, ca. 700 kaknickpoint in the Vouraikos catchment. The effectiveness of lithology-dependent erodibilities is supported by the observation that if lithology-dependent erodibilitiesare used to calibrate studied river long profiles in χ distance, we obtain long profile concavities that fall within the theoretical range. Finally, we use lithology-calibrated metrics to provide new geomorphic constraints on the timing and magnitude of tectonic perturbations in these catchments. These geomorphic results are interpreted in conjunction with previous onshore and offshore studies to shed new light on fault growth and linkage history in the Gulf of Corinth. Our study therefore provides a topographic analysis-based approach to quantify lithological effects on transient catchments

  • Journal article
    Stewart GB, Dajnak D, Davison J, Carslaw DC, Beddows AV, Phantawesak N, Stettler MEJ, Hollaway MJ, Beevers SDet al., 2024,

    New NOx and NO2 vehicle emission curves, and their implications for emissions inventories and air pollution modelling

    , Urban Climate, Vol: 57, ISSN: 2212-0955

    Emissions of NOx and primary NO2 from road transport sources are highly influential in NO2 exposure at both local and regional scales; quantifying these accurately is therefore an important but challenging component of emissions inventory and air pollution model development. Results are presented from an urban air pollution model, after creation of new speed-emissions curves for NOx through the combination of available vehicle drive cycles and nearly 500,000 UK-based remote sensing measurements of exhaust emissions. Vehicle power-based relationships are applied to 1 Hz drive cycle datasets, with random sampling of the outputs allowing generation of the new curves. These demonstrate significantly higher emissions than those predicted by existing curves for most Euro VI HGVs, and among successive petrol and diesel passenger cars; this may be partly explained by relatively low UK ambient temperatures, as well as an underestimation of the level of tampering with HGV SCR systems. Implementation of the curves in a detailed emissions inventory for London, UK in 2019 leads to substantially improved air pollution model performance for NOx/NO2; normalised mean bias reduces in magnitude, changing from −0.18 to +0.01 for NOx and −0.12 to +0.01 for NO2. The curves developed are widely applicable, and the novel approach outlined has the potential to improve source apportionment and future model predictions under differing policy scenarios, produce better exposure estimates for health-related studies and revise NOx emissions budgets for compliance with the NEC Directive, all of which are important for the development of mitigation policies.

  • Journal article
    Heath BE, Suzuki R, LePenru NP, Skinner J, Orme CDL, Ewers RM, Sethi SS, Picinali Let al., 2024,

    Spatial ecosystem monitoring with a Multichannel Acoustic Autonomous Recording Unit (MAARU)

    , Methods in Ecology and Evolution, Vol: 15, Pages: 1568-1579, ISSN: 2041-210X

    1. Multi-microphone recording adds spatial information to recorded audio with emerging applications in ecosystem monitoring. Specifically placing sounds in space can improve animal count accuracy, locate illegal activity like logging and poaching, track animals to monitor behaviour and habitat use and allow for ‘beamforming’ to amplify sounds from target directions for downstream classification. Studies have shown many advantages of spatial acoustics, but uptake remains limited as the equipment is often expensive, complicated, inaccessible or only suitable for short-term deployments.2. With an emphasis on enhanced uptake and usability, we present a low-cost, open-source, six-channel recorder built entirely from commercially available components which can be integrated into a solar-powered, online system. The MAARU (Multichannel Acoustic Autonomous Recording Unit) works as an independent node in long-term autonomous, passive and/or short-term deployments. Here, we introduce MAARU's hardware and software and present the results of lab and field tests investigating the device's durability and usability.3. MAARU records multichannel audio with similar costs and power demands to equivalent omnidirectional recorders. MAARU devices have been deployed in the United Kingdom and Brazil, where we have shown MAARUs can accurately localise pure tones up to 6 kHz and bird calls as far as 8 m away (±10° range, 100% and >60% of signals, respectively). Louder calls may have even further detection radii. We also show how beamforming can be used with MAARUs to improve species ID confidence scores.4. MAARU is an accessible, low-cost option for those looking to explore spatial acoustics accurately and easily with a single device, and without the formidable expenses and processing complications associated with establishing arrays. Ultimately, the added directional element of the multichannel recording provided by MAARU allows for enhanced recording

  • Report
    Clarke B, Zachariah M, Barnes C, Sparks N, Toumi R, Yang W, Vahlberg M, Lagmay AM, Ybañez R, Delmendo PA, Malaiba C, Vrkic D, Otto F, Basconcillo J, Kimutai J, Philip S, Blomendaal N, Singh R, Arrighi J, Rodriguez LC, Rances Aet al., 2024,

    Climate change increased Typhoon Gaemi's wind speeds and rainfall, with devastating impacts across the western Pacific region

  • Journal article
    Kelly H, Archer M, Ma X, Nykyri K, Eastwood J, Southwood Det al., 2024,

    Identification of Kelvin-Helmholtz generated vortices in magnetised fluids

    , Frontiers in Astronomy and Space Sciences, Vol: 11, ISSN: 2296-987X

    The Kelvin-Helmholtz Instability (KHI), arising from velocity shear across the magnetopause, plays a significant role in the viscous-like transfer of mass, momentum, and energy from the shocked solar wind into the magnetosphere. While the KHI leads to growth of surface waves and vortices, suitable detection methods for these applicable to magnetohydrodynamics (MHD) are currently lacking. A novel method is derived based on the well-established λ-family of hydrodynamic vortex identification techniques, which define a vortex as a local minimum in an adapted pressure field. The J × B Lorentz force is incorporated into this method by using an effective total pressure in MHD, including both magnetic pressure and a pressure-like part of the magnetic tension derived from a Helmholtz decomposition. The λMHD method is shown to comprise of four physical effects: vortical momentum, density gradients, fluid compressibility, and the rotational part of the magnetic tension. A local three-dimensional MHD simulation representative of near-flank magnetopause conditions (plasma β’s 0.5–5 and convective Mach numbers Mf ∼ 0.4) under northward interplanetary magnetic field (IMF) is used to validate λMHD. Analysis shows it correlates well with hydrodynamic vortex definitions, though the level of correlation decreases with vortex evolution. Overall, vortical momentum dominates λMHD at all times. During the linear growth phase, density gradients act to oppose vortex formation. By the highly nonlinear stage, the formation of small-scale structures leads to a rising importance of the magnetic tension. Compressibility was found to be insignificant throughout. Finally, a demonstration of this method adapted to tetrahedral spacecraft observations is performed.

  • Journal article
    Li J, Prentice IC, 2024,

    Global patterns of plant functional traits and their relationships to climate

    , Communications Biology, ISSN: 2399-3642
  • Journal article
    Haas O, Keeping T, Gomez-Dans J, Prentice IC, Harrison SPet al., 2024,

    The global drivers of wildfire

    , Frontiers in Environmental Science, ISSN: 2296-665X

    Changes in wildfire regimes are of growing concern and raise issues about how well we can model risks in a changing climate. Process-based coupled fire-vegetation models, used to project future wildfire regimes, capture many aspects of wildfire regimes poorly. However, there is now a wealth of information from empirical studies on the climate, vegetation, topography and human activity controls on wildfire regimes. The measures used to quantify these controls vary among studies, but certain variables consistently emerge as the most important: gross primary production as a measure of fuel availability, vegetation cover as a measure of fuel continuity, and atmospheric humidity as a measure of fuel drying. Contrary to popular perception, ignitions are generally not a limiting factor for wildfires. In this review, we describe how empirical fire models implement wildfire processes, synthesise current understanding of the controls on wildfire extent and severity, and suggest ways in which fire modelling could be improved.• Empirical analyses of the controls on wildfires consistently identify vegetation properties associated with fuel availability and continuity and climate factors associated with fuel drying as the most important influences on wildfire extent and severity. • Ignitions, whether anthropogenic or natural, are generally not limiting.• Fire size, burnt area and fire intensity are influenced by different factors; current relationships between these aspects of wildfire could become decoupled in an altered climate. • Some hypotheses embedded in 'process-based' fire-vegetation models are inconsistent with empirical evidence, implying a need for a re-design.

  • Journal article
    Khurana M, Curran-Sebastian J, Scheidwasser N, Morgenstern C, Rasmussen M, Fonager J, Stegger M, Tang M-HE, Juul JL, Escobar-Herrera LA, Møller FT, Albertsen M, Kraemer MUG, du Plessis L, Jokelainen P, Lehmann S, Krause TG, Ullum H, Duchêne DA, Mortensen LH, Bhatt Set al., 2024,

    High-resolution epidemiological landscape from ~290,000 SARS-CoV-2 genomes from Denmark

    , Nature Communications, Vol: 15, ISSN: 2041-1723

    Vast amounts of pathogen genomic, demographic and spatial data are transforming our understanding of SARS-CoV-2 emergence and spread. We examined the drivers of molecular evolution and spread of 291,791 SARS-CoV-2 genomes from Denmark in 2021. With a sequencing rate consistently exceeding 60%, and up to 80% of PCR-positive samples between March and November, the viral genome set is broadly whole-epidemic representative. We identify a consistent rise in viral diversity over time, with notable spikes upon the importation of novel variants (e.g., Delta and Omicron). By linking genomic data with rich individual-level demographic data from national registers, we find that individuals aged < 15 and > 75 years had a lower contribution to molecular change (i.e., branch lengths) compared to other age groups, but similar molecular evolutionary rates, suggesting a lower likelihood of introducing novel variants. Similarly, we find greater molecular change among vaccinated individuals, suggestive of immune evasion. We also observe evidence of transmission in rural areas to follow predictable diffusion processes. Conversely, urban areas are expectedly more complex due to their high mobility, emphasising the role of population structure in driving virus spread. Our analyses highlight the added value of integrating genomic data with detailed demographic and spatial information, particularly in the absence of structured infection surveys.

  • Journal article
    Warwick L, Murray JE, Brindley H, 2024,

    The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 2: First measurements of the emissivity of water in the far-infrared

    , Atmospheric Measurement Techniques, Vol: 17, Pages: 4777-4787

    <jats:p>Abstract. In this paper, we describe a method for retrieving the surface emissivity of specular surfaces across the wavenumber range of 400–1600 cm−1 using novel radiance measurements of the Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) instrument. FINESSE is described in detail in Part 1 (Murray et al., 2024) of this paper. We apply the method to two sets of measurements of distilled water. The first set of emissivity retrievals is of distilled water heated above ambient temperature to enhance the signal-to-noise ratio. The second set of emissivity retrievals is of ambient temperate water at a range of viewing angles. In both cases, the observations agree well with calculations based on compiled refractive indices across the mid- and far-infrared. It is found that the reduced contrast between the up- and downwelling radiation in the ambient temperature case degrades the performance of the retrieval. Therefore, a filter is developed to target regions of high contrast, which improves the agreement between the ambient temperature emissivity retrieval and the predicted emissivity. These retrievals are, to the best of our knowledge, the first published simultaneous retrievals of the surface temperature and emissivity of water that extend into the far-infrared and demonstrate a method that can be used and further developed for the in situ retrieval of the emissivity of other surfaces in the field. </jats:p>

  • Journal article
    Boyle MJW, Sharp AC, Barclay MV, Chung AYC, Ewers RM, de Rougemont G, Bonebrake TC, Kitching RL, Stork NE, Ashton LAet al., 2024,

    Tropical beetles more sensitive to impacts are less likely to be known to science

    , Current Biology, Vol: 34, Pages: R770-R771, ISSN: 0960-9822

    Insects are posited to be declining globally. This is particularly pertinent in tropical forests, which exhibit both the highest levels of biodiversity and the highest rates of biodiversity loss. However, for the hyper-diverse tropical insects there are scant data available to evidence declines. Understanding tropical insect diversity and its response to environmental change has therefore become a challenge, but it is estimated that 80% of tropical insect species remain undescribed1. Insect biodiversity predictions are based mostly on well-studied taxa and extrapolated to other groups, but no one knows whether resilience to environmental change varies between undescribed and described species. Here, we collected staphylinid beetles from unlogged and logged tropical forests in Borneo and investigated their responses to environmental change. Out of 252 morphospecies collected, 76% were undescribed. Undescribed species showed higher community turnover, reduced abundance and decreased probability of occurrence in logged forests. Thus the unknown components of tropical insect biodiversity are likely more impacted by human-induced environmental change. If these patterns are widespread, how accurate will assessments of insect declines in the tropics be?

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1154&limit=10&resgrpMemberPubs=true&resgrpMemberPubs=true&page=2&respub-action=search.html Current Millis: 1726947016391 Current Time: Sat Sep 21 20:30:16 BST 2024

Join the network

If you’d like to join the network, just email us here.