Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Ochoa-Tocachi BF, Buytaert W, Antiporta J, Acosta L, Bardales JD, Célleri R, Crespo P, Fuentes P, Gil-Ríos J, Guallpa M, Llerena C, Olaya D, Pardo P, Rojas G, Villacís M, Villazón M, Viñas P, De Bièvre Bet al., 2018,

    High-resolution hydrometeorological data from a network of headwater catchments in the tropical Andes

    , Scientific Data, Vol: 5, ISSN: 2052-4463

    This article presents a hydrometeorological dataset from a network of paired instrumented catchments, obtained by participatory monitoring through a partnership of academic and non-governmental institutions. The network consists of 28 headwater catchments (<20 km2) covering three major biomes in 9 locations of the tropical Andes. The data consist of precipitation event records at 0.254 mm resolution or finer, water level and streamflow time series at 5 min intervals, data aggregations at hourly and daily scale, a set of hydrological indices derived from the daily time series, and catchment physiographic descriptors. The catchment network is designed to characterise the impacts of land-use and watershed interventions on the catchment hydrological response, with each catchment representing a typical land use and land cover practice within its location. As such, it aims to support evidence-based decision making on land management, in particular evaluating the effectiveness of catchment interventions, for which hydrometeorological data scarcity is a major bottleneck. The data will also be useful for broader research on Andean ecosystems, and their hydrology and meteorology.

  • Journal article
    O'Keeffe J, Moulds S, Bergin E, Brozovic N, Mijic A, Buytaert Wet al., 2018,

    Including farmer irrigation behavior in a sociohydrological modeling framework with application in north India

    , Water Resources Research, Vol: 54, Pages: 4849-4866, ISSN: 0043-1397

    Understanding water user behavior and its potential outcomes is important for the development of suitable water resource management options. Computational models are commonly used to assist water resource management decision making; however, while natural processes are increasingly well modeled, the inclusion of human behavior has lagged behind. Improved representation of irrigation water user behavior within models can provide more accurate and relevant information for irrigation management in the agricultural sector. This paper outlines a model that conceptualizes and proceduralizes observed farmer irrigation practices, highlighting impacts and interactions between the environment and behavior. It is developed using a bottom‐up approach, informed through field experience and farmer interaction in the state of Uttar Pradesh, northern India. Observed processes and dynamics were translated into parsimonious algorithms, which represent field conditions and provide a tool for policy analysis and water management. The modeling framework is applied to four districts in Uttar Pradesh and used to evaluate the potential impact of changes in climate and irrigation behavior on water resources and farmer livelihood. Results suggest changes in water user behavior could have a greater impact on water resources, crop yields, and farmer income than changes in future climate. In addition, increased abstraction may be sustainable but its viability varies across the study region. By simulating the feedbacks and interactions between the behavior of water users, irrigation officials and agricultural practices, this work highlights the importance of directly including water user behavior in policy making and operational tools to achieve water and livelihood security.

  • Journal article
    Lusk CH, Clearwater MJ, Laughlin DC, Harrison SP, Prentice IC, Nordenstahl M, Smith Bet al., 2018,

    Frost and leaf-size gradients in forests: global patterns and experimental evidence

    , New Phytologist, Vol: 219, Pages: 565-573, ISSN: 0028-646X

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages.

  • Journal article
    Salimzadeh S, Paluszny Rodriguez A, Zimmerman RW, 2018,

    Effect of cold CO2 injection on fracture apertures and growth

    , International Journal of Greenhouse Gas Control, Vol: 74, Pages: 130-141, ISSN: 1750-5836

    The injection of cold CO2 is modelled in three dimensions using a two-stage coupled thermoporoelastic model, with the aim of evaluating changes in apertures and potential growth of fractures. Non-isothermal flow is considered within the fractures and the rock matrix, and the two flow domains are coupled through a mass transfer term. The numerical model has been developed using standard finite elements, with spatial discretisation achieved using the Galerkin method, and temporal discretisation using finite differences. A full-scale field case geometric model, based on the Goldeneye depleted hydrocarbon reservoir in the North Sea, is developed and used for simulations. The in situ faults are modelled discretely as discontinuous surfaces in a three-dimensional matrix, including basement, reservoir, caprock and overburden layers. The faults are assumed initially to be low-permeable faults, with the same permeability as the caprock. However, the simulations show that their apertures (and as a result, their permeabilities) vary due to the thermoporoelastic effects caused by the injection of the relatively cold CO2. The change in the fracture apertures is mainly due to thermal effects; the reservoir layer undergoes contractions due to the cooling, significantly increasing fault aperture in the region of the fault within the reservoir, whereas the fault aperture is reduced in regions within the caprock. Propagation of fractures under thermoporoelastic loading is investigated. Results show that the distance to the injection well, as well as spatial orientation of fractures with respect to the injection well, affect aperture evolution and potential growth of fractures. A sensitivity analysis is performed on the parameters affecting the fracture growth: minimum normal stress acting on the fracture plane, dip angle of the fracture, and the contact friction coefficient. It is found that low friction, low normal contact stress, or high in situ shear stress on the fracture surface

  • Journal article
    Riutta T, Malhi Y, Kho LK, Marthews TR, Huaraca Huasco W, Khoo M, Tan S, Turner E, Reynolds G, Both S, Burslem DFRP, Teh YA, Vairappan CS, Majalap N, Ewers RMet al., 2018,

    Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.

    , Global Change Biology, Vol: 24, Pages: 2913-2928, ISSN: 1354-1013

    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n=6) and logged (n=5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha-1 year-1 , respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs. 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, non-pioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests. This article is protected by copyright. All rights reserved.

  • Journal article
    Bierman PR, Rood DH, Shakun JD, Portenga EW, Corbett LBet al., 2018,

    Directly dating postglacial Greenlandic land-surface emergence at high resolution using in situ 10Be

    , Quaternary Research, Vol: 90, Pages: 110-126, ISSN: 0033-5894

    Postglacial emergence curves are used to infer mantle rheology, delimit ice extent, and test models of the solid Earth response to changing ice and water loads. Such curves are rarely produced by direct dating of land emergence; rather, most rely on the presence of radiocarbon-datable organic material and inferences made between the age of sedimentary deposits and landforms indicative of former sea level. Here, we demonstrate a new approach, 10Be dating, to determine rates of postglacial land emergence in two different settings. In southern Greenland (Narsarsuaq/Igaliku), we date directly the exposure, as relative sea level fell, of gravel beaches and rocky outcrops allowing determination of rapid, post–Younger Dryas emergence. In western Greenland (Kangerlussuaq), we constrain Holocene isostatic response by dating the sequential stripping of terrace sediment driven by land-surface uplift, relative sea-level fall, and resulting fluvial incision. The technique we employ provides high temporal and elevation resolution important for quantifying rapid emergence immediately after deglaciation and less rapid uplift during the middle Holocene. 10Be-constrained emergence curves can improve knowledge of relative sea-level change by dating land emergence along rocky coasts, at elevations and locations where radiocarbon-datable sediments are not present, and without the lag time needed for organic material to accumulate.

  • Journal article
    Jean K, Hamlet A, Dorigatti I, Gaythorpe K, Imai N, Cibrelus L, Benzler J, Garske Tet al., 2018,

    Responding to yellow fever outbreaks in West and Central Africa: Rapid prioritization assessment for the pre-emptive vaccination campaigns

    , Revue d'Épidémiologie et de Santé Publique, Vol: 66, Pages: S392-S392, ISSN: 0398-7620
  • Journal article
    Routledge I, Chevez JER, Cucunubá ZM, Gomez Rogriguez M, Guinovart C, Gustafson K, Schneider K, Walker PGT, Ghani A, Bhatt Set al., 2018,

    Estimating spatiotemporally varying malaria reproduction numbers in a near elimination setting

    , Nature Communications, Vol: 9, Pages: 1-8, ISSN: 2041-1723

    In 2016 the World Health Organization identified 21 countries that could eliminate malaria by 2020. Monitoring progress towards this goal requires tracking ongoing transmission. Here we develop methods that estimate individual reproduction numbers and their variation through time and space. Individual reproduction numbers, Rc, describe the state of transmission at a point in time and differ from mean reproduction numbers, which are averages of the number of people infected by a typical case. We assess elimination progress in El Salvador using data for confirmed cases of malaria from 2010 to 2016. Our results demonstrate that whilst the average number of secondary malaria cases was below one (0.61, 95% CI 0.55–0.65), individual reproduction numbers often exceeded one. We estimate a decline in Rc between 2010 and 2016. However we also show that if importation is maintained at the same rate, the country may not achieve malaria elimination by 2020.

  • Conference paper
    Thomas RN, Paluszny A, Zimmerman RW, 2018,

    Effect of fracture growth velocity exponent on fluid flow through geomechanically-grown 3d fracture networks

    , 2nd International Discrete Fracture Network Engineering Conference

    Copyright 2018 ARMA. Geomechanical discrete fracture networks (DFNs) are grown using a 3D finite element-based fracture mechanics simulator. The influence of the fracture growth rate exponent (β) on the resulting fracture geometry and hydraulic properties of networks is investigated. Previous work has found that β has a complex relationship with the final geometry of geomechanically-grown 2D DFNs. Realistic features evolve during the growth of DFNs as a result of the orientation of the principal stress axis and fracture interaction. High values of β cause interaction effects to be more pronounced, and irregular shaped fractures to be more common. Low values of β are found to produce networks with a balance between selective growth on preferentially oriented and interacting fractures, and significant increases in fracture surface area with computation time. The permeability of DFNs is significantly influenced by anisotropy, which develops in the axes perpendicular to the principal stress direction. For fracture networks with different β values, permeabilities along the principal axes are similar for the same total fracture void space.

  • Journal article
    Jucker T, Asner GP, Dalponte M, Brodrick PG, Philipson CD, Vaughn NR, Teh YA, Brelsford C, Burslem DFRP, Deere NJ, Ewers RM, Kvasnica J, Lewis SL, Malhi Y, Milne S, Nilus R, Pfeifer M, Phillips OL, Qie L, Renneboog N, Reynolds G, Riutta T, Struebig MJ, Svatek M, Turner EC, Coomes DAet al., 2018,

    Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning

    , BIOGEOSCIENCES, Vol: 15, Pages: 3811-3830, ISSN: 1726-4170

    Borneo contains some of the world's most biodiverse and carbon-dense tropical forest, but this 750 000 km2 island has lost 62 % of its old-growth forests within the last 40 years. Efforts to protect and restore the remaining forests of Borneo hinge on recognizing the ecosystem services they provide, including their ability to store and sequester carbon. Airborne laser scanning (ALS) is a remote sensing technology that allows forest structural properties to be captured in great detail across vast geographic areas. In recent years ALS has been integrated into statewide assessments of forest carbon in Neotropical and African regions, but not yet in Asia. For this to happen new regional models need to be developed for estimating carbon stocks from ALS in tropical Asia, as the forests of this region are structurally and compositionally distinct from those found elsewhere in the tropics. By combining ALS imagery with data from 173 permanent forest plots spanning the lowland rainforests of Sabah on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks using ALS-derived canopy height and canopy cover as input metrics. An advanced feature of this new model is the propagation of uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of carbon stocks to be quantified robustly. We show that the model effectively captures variation in aboveground carbon stocks across extreme disturbance gradients spanning tall dipterocarp forests and heavily logged regions and clearly outperforms existing ALS-based models calibrated for the tropics, as well as currently available satellite-derived products. Our model provides a simple, generalized and effective approach for mapping forest carbon stocks in Borneo and underpins ongoing efforts to safeguard and facilitate the restoration of its unique tropical forests.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1154&limit=10&resgrpMemberPubs=true&page=222&resgrpMemberPubs=true&respub-action=search.html Current Millis: 1766626871834 Current Time: Thu Dec 25 01:41:11 GMT 2025

Join the network

Contact Hsuan-Yi to join the network.