In the Department of Materials, we have a range of exciting PhD opportunities available in our different research groups.
We have listed our available opportunities below.
Accordion
- AI-automated workflows for quantifying disorder and heterogeneity in halide perovskite
- Data-Driven Electrocatalysis for Energy and Chemical Systems: Hydrogen oxidation as a key enabler for electrified chemical synthesis beyond water
- Inspection of ceramic-based materials used in demanding environments using data-driven systems.
- Novel diagnostics for understanding cross-talk in carbon dioxide electrolysers
- On-Chip Operando Gas Analytics for Probing Degradation in Battery Materials
- PhD Studentship in hot corrosion of nickel superalloys for aero-engine applications at Imperial College
- Upscaling Iron Electrolysis: Digital Twins of Electrolysis Systems
This studentship is open to candidates eligible for Home fees only, as defined by UKRI guidelines.
Campus: South Kensington and Rutherford Appleton Lab (Harwell, Oxford)
Funding Details:
- Coverage: Home tuition fees, stipend, and up to £2,000 per year will be available for travel and subsistence to support travel to STFC sites and appropriate conferences and workshops.
- Duration: 42 months
- Study mode: Full-time
- Annual stipend: UKRI rate - £22,780 AY 2025/26
Supervisor(s): Sean Collins (Imperial College London), Mohsen Danaie (Diamond Light Source) and Jaehoon Cha (STFC).
Project Description:
Computer-driven collection of scientific data has allowed datasets to be acquired that are so large it would be impossible for a human being to analyse them. Making use of these vast quantities of data will allow for a step change in the science of new materials known as halide perovskites, a promising building block for solar cells and energy-efficient displays and lighting. As part of the Ada Lovelace Centre PhD studentship programme, this project is a joint PhD project across the Science Technology and Facilities Council (STFC), Diamond Light Source, and Imperial. The project will advance artificial intelligence tools to pull out the important scientific details from big datasets covering the chemical composition and structure of materials spanning the scale of a few atoms all the way up to the size of a working device. Learning the physics and chemistry behind the data with artificial intelligence, often otherwise used as a ‘black box’ analysis, requires substantial new development of software and ways of bringing data and scientific interpretation together for new materials science discoveries for tomorrow’s energy needs.
More information:
Halide perovskites are among a select group of materials defining next-generation semiconductor technologies from photovoltaics for grid-scale energy generation [1] to high-efficiency light emitting diodes [2] and photodetectors for sensors. Despite their transformative potential, limitations on the performance and lifespan of halide perovskite devices originate in disorder (e.g. octahedral tilting [3]) and heterogeneity [4] spanning from the nanometre scale of grain boundaries and crystallographic defects to the centimetre scale of devices. Recent progress in the science of halide perovskites has emerged from spatially resolved nanobeam scanning electron diffraction (SED) and correlated elemental mapping in the STEM. Yet data is acquired under ‘low-dose’ conditions resulting in signals that are noisy—extremely so for weak, simultaneous spectroscopy signals in X-ray energy dispersive spectroscopy (EDS). The imperative with such data is to find low-concentration features within the noise, prompting much larger datasets under automatic control of the stage and microscope, as recently demonstrated at the electron Physical Sciences Imaging Centre (Diamond Light Source) [5].
AI-automated workflows – for both data reduction and, critically, for data interpretation – are poised to realise these gains. This project will be centred on developing autoencoder (AE) workflows [6] (e.g. disentangling, variational AEs), a set of AI neural network structures that make use of two halves: The first half encodes the data to a latent space and the second decodes the data from that space. AEs are powerful as classifiers, but the latent space representation can also be used to ascertain physical parameters, going beyond a ‘black box’ AI classifier. This process requires not a single AE but a well-designed architecture tailored to the types of inputs and outputs sought.
The PhD researcher is expected to spend 50% of the time at Rutherford Appleton Lab (Harwell Oxford) and 50% of the time in the Department of Materials, Imperial College London (South Kensington). The PhD researcher will also participate in Imperial-based cohort activities for PhD researchers throughout the degree.
[1] J.C. Blakesley et al. J. Phys. Energy 6 (2024) 041501.
[2] Z. Chen et al. J. Phys. Photonics 6 (2024) 032501.
[3] T.A.S. Doherty et al. Science 374 (2021) 1598–1605.
[4] K. Frohna et al. Nat. Nanotechnol. 17 (2022) 190–196.
[5] J. Ryu et al. ScienceOpen Research, 2025: p. e197. https://doi.org/10.14293/APMC13-2025-0197.
[6] J. Cha et al. Nat. Mach. Intell. 7 (2025) 307–314.
This studentship is open to candidates eligible for Home fees only, as defined by UKRI guidelines.
Campus: White City
Funding Details:
- Coverage: Home tuition fees, stipend and consumables (£1,000 for the first 3 years)
- Duration: 42 months
- Study mode: Full-time
- Annual stipend: UKRI rate - £22,780 AY 2025/26
Supervisor(s): Ifan Stephens and Reshma Rao
Project Description:
The electrification of chemical synthesis is central to the transition towards sustainable energy and manufacturing systems. Non-aqueous electrochemical routes to reactions such as CO₂ and N₂ reduction offer important advantages over aqueous processes, including improved selectivity and access to new reaction pathways. However, these systems are currently limited by the anode reaction, hydrogen oxidation. Slow kinetics and electrolyte degradation at the anode remain major barriers to practical implementation.
The student will carry out high-throughput electrochemical testing to systematically evaluate hydrogen oxidation across multiple electrolyte compositions and synthesised catalyst materials. Data-driven analysis and machine-learning tools will be used to identify trends and guide experimental design. The experimental work will be closely integrated with collaborators in Denmark, developing molecular-scale models of the electrochemical interface, enabling direct links between atomistic insight and measured performance. The project will provide training in electrochemistry, materials synthesis, automated experimentation and data-enabled research methods.
This studentship is funded by the Centre for Doctoral Training in Developing National Capability for Materials 4.0 and the Department of Materials. It is open to candidates eligible for Home fees only, as defined by UKRI guidelines.
Campus: South Kensington
Funding Details:
- Coverage: Home tuition fees, stipend and consumables (£1,000 for the first 3 years)
- Duration: 48 months
- Study mode: Full-time
- Annual stipend: UKRI rate - £22,780 AY 2025/26
- Supervisor(s): Oriol Gavalda Diaz (Imperial College London), and Andres Gameros (Rolls-Royce)
Deadline: Applications are accepted all year round
The long-term performance of energy generation (e.g., nuclear plants) and transport applications (e.g., aviation) is underpinned by ceramic-based coatings and composites that can withstand demanding environments. For instance, thermal barrier coatings (TBCs), environmental barrier coatings (EBCs), and ceramic matrix composites (CMCs) are examples of ceramics which can continue to improve product performance and promote sustainability in the aero-engine industry. Given the harsh conditions, these materials may experience degradation through-life driven by complex combinations of thermal, mechanical, and chemical processes, often accelerated by contaminants such as CMAS (calcium–magnesium–alumino–silicates).
Rolls-Royce has identified Raman spectroscopy as a promising technology for non-destructive and potentially on-wing (without dismounting the aero-engine) inspection of such materials. However, the Raman spectra collected in-service are highly complex, and their interpretation requires new approaches that integrate databases of lab-based characterisation data and data-driven analysis protocols. The key challenge is linking spectral features to specific degradation mechanisms and relate these to the environmental degradation of the component. Moreover, a holistic view of the degradation of the material will require to link these degradation mechanisms to other sources of inspection data (e.g. advanced microscopy techniques or visual inspection).
This project will create a data-rich experimental and analytical framework to overcome these challenges. It will combine the following:
- Controlled laboratory experiments that simulate degradation mechanisms in ceramics, generating reference datasets of Raman spectra across different conditions (temperature, stresses, and contaminant exposure).
- Complementary nanoscale characterisation data (e.g., electron microscopy) to validate the key spectral signatures.
- Advanced data-analysis protocols to link lab data to real applications. Methods such as spectral decomposition, machine learning, and database-driven comparison will be applied to extract characteristic features from the Raman datasets. The goal is to create a systematic approach for data-informed inspection, in which spectra are not simply recorded but actively interpreted against a material database.
Rolls-Royce will provide real aero-engine samples to validate our laboratory-generated databases and analysis protocols. Hence, the outputs of the project will directly support the implementation of in-situ/on-wing inspection tools by Rolls-Royce, reducing reliance on destructive testing, enabling predictive maintenance strategies and extending the lifetime of components.
Although the scope of the project is aimed solely at the aero-engine industry, it is possible that the techniques and protocols developed within this project will expand beyond this remit. The testing methodologies and data analysis protocols developed will be relevant for any sector in which ceramics are exposed to complex, extreme environments and require careful inspection routines. For instance, we envisage that nuclear energy, where ceramic composites are likely to play a critical role in future fusion and fission reactors, is one example of this. In summary, this project will deliver both fundamental scientific insights into ceramic degradation mechanisms and practical data-informed frameworks and databases for inspection of materials.
Apply by 06/02/2026.
For general enquiries, please contact doctoral-training@royce.ac.uk.
For application-related queries, please contact Annalisa Neri. If you have specific technical or scientific queries about this PhD, we encourage you to contact the lead, Oriol Gavalda Diaz.
This studentship is open to candidates eligible for Home fees only, as defined by UKRI guidelines.
Campus: White City
Funding Details:
- Coverage: Home tuition fees, stipend and consumables (£1,000 for the first 3 years)
- Duration: 48 months
- Study mode: Full-time
- Annual stipend: UKRI rate - £22,780 AY 2025/26
Supervisor(s): Ifan Stephens (Imperial College London), Reshma Rao (Imperial College London), Andy Wain (NPL), Crina Corbos (Johnson Matthey)
Project Description:
Carbon dioxide electrolysis offers a promising route to producing fuels and chemicals while reducing reliance on fossil resources and supporting the transition to net zero. However, the performance and durability of carbon dioxide electrolysers are limited by poorly understood degradation processes, particularly those arising from cross-talk and product crossover between electrodes. New diagnostic approaches are therefore required to probe these effects under realistic operating conditions.
This PhD project will develop and apply novel online, in situ and operando diagnostic techniques to study cross-talk phenomena in carbon dioxide electrolysers. The student will combine electrochemical testing with advanced analytical methods, including mass spectrometry and vibrational spectroscopy, to quantify reaction products, impurities and intermediates, and to relate these measurements to device performance and degradation mechanisms. The work will span both fundamental method development and application to industrially relevant electrolyser systems.
The project is a close collaboration between Imperial College London and NPL, with additional industrial engagement through Johnson Matthey. The student will be based at Imperial, but will spend time working at the NPL site in Teddington, which offers access to a wide range of advanced measurement capabilities.
This studentship is funded by the Centre for Doctoral Training in Developing National Capability for Materials 4.0 and the Department of Materials. It is open to candidates eligible for Home fees only, as defined by UKRI guidelines.
Campus: White City and South Kensington
Funding Details:
- Coverage: Home tuition fees, stipend and consumables (£1,000 for the first 3 years)
- Duration: 48 months
- Study mode: Full-time
- Annual stipend: UKRI rate - £22,780 AY 2025/26
- Supervisor(s): Ifan Stephens, Jingwen Weng and Bethan Davies
Deadline: 08/01/2026
Batteries are central to the transition towards low-carbon energy systems, yet their performance, lifetime and safety are limited by complex degradation processes occurring within battery materials and interfaces. Many of these processes are accompanied by gas evolution [faraday.ac.uk], particularly under elevated temperatures and fast-charging conditions, but remain difficult to probe quantitatively under realistic operating conditions.
This PhD project will develop and apply a chip-based electrochemical mass spectrometry (EC-MS) platform for operando detection of gas evolution in battery materials, with an emphasis on temperature-controlled measurements. The student will work on adapting and validating the EC-MS system and applying it to investigate degradation mechanisms in representative battery materials and electrolyte systems. The project is highly experimental and interdisciplinary, combining electrochemistry, materials chemistry and advanced characterisation methods. In line with the Materials 4.0 framework, the work will generate complex, data-rich datasets that will be analysed using data-driven and AI-assisted approaches to support signal interpretation, pattern recognition and the development of scalable data workflows. The student will be embedded within the Materials 4.0 CDT at Imperial College London and will work closely with the Danish industrial partner Spectro Inlets [spectroinlets.com].
Apply by 06/02/2026.
For general enquiries, please contact doctoral-training@royce.ac.uk
For application-related queries, please contact Annalisa Neri
For project-related queries, please contact Jingwen Weng
This studentship is funded by the Centre for Industry-Partnered Doctoral Training in ACM and Rolls-Royce. It is open to candidates eligible for Home fees only, as defined by UKRI guidelines.
Campus: South Kensington
Funding Details:
- Coverage: Home tuition fees, stipend and consumables (£1,000 for the first 3 years)
- Duration: 42 months
- Study mode: Full-time
- Annual stipend: UKRI rate - £22,780 AY 2025/26
- Supervisor(s): Stella Pedrazzini and David Dye
Deadline: 30/01/2026
We invite applications for a fully funded PhD studentship at Imperial College in the Department of Materials.
The successful candidate will join a dynamic and inclusive team committed to world-class research and academic excellence.
Applications are invited for a 3.5-year PhD studentship for the study of hot corrosion of polycrystalline superalloys for aero-engine applications, available at Imperial College London, in collaboration with Rolls-Royce plc, starting in October 2026.
Your project will study several compositional variations of a novel disc alloy and their effect on the corrosion resistance. Nickel superalloys are used in the turbine discs of aero-engines because of their outstanding mechanical properties up to elevated temperatures. Rolls-Royce plc, as a world-leading aero-engine manufacturer, has a strong interest in understanding the failure mechanisms of alloys in service, to improve them. Some nickel-based superalloys fail substantially faster than others when exposed to sulphur-containing compounds; however, the mechanisms are not well understood. Some alloying elements, such as Mn, Si, etc, can alter the rate of corrosion when the alloy is exposed to corrosive gases and molten salts. A systematic study performed on alloys with varying compositions is required to understand the effect of those elements. This project will involve the characterisation of new alloys using advanced techniques such as scanning/transmission electron microscopy, atom probe tomography and synchrotron-based techniques. It will involve mechanical testing under different environments and some thermodynamic modelling to understand the failure mechanisms. It may involve characterisaiton of samples that are tested at Rolls-Royce or by one of our collaborators too.
Applicants should have a Master’s degree or (equivalent) with First Class or Upper Second Class in Materials Science, Chemical Engineering, Mechanical Engineering, Physics or Chemistry. For information on how to apply, go to: Application process | Study | Imperial College London.
You will be required to submit:
- Personal statement
- CV
- The contact details of two referees – please note that the prospective supervisor cannot be a referee
Please contact Annalisa Neri for further information on the application process.
For further information or informal discussions about the position, please contact: Dr Stella Pedrazzini, s.pedrazzini@imperial.ac.uk
Our values are at the root of everything we do, and everyone in our community is expected to demonstrate Imperial:
- Respect
- Collaboration
- Excellence
- Integrity
- Innovation
Students are also required to comply with all Imperial policies and regulations
We are committed to equality of opportunity, to eliminating discrimination and to creating an inclusive working environment for all. We encourage candidates to apply irrespective of age, disability, marriage or civil partnership status, pregnancy or maternity, race, religion and belief, gender reassignment, sex, or sexual orientation. You can read more about our commitment on our webpages.
This studentship is funded by the Centre for Doctoral Training in Developing National Capability for Materials 4.0 and the Department of Materials. It is open to candidates eligible for Home fees only, as defined by UKRI guidelines.
Campus: South Kensington
Funding Details:
- Coverage: Home tuition fees, stipend and consumables (£1,000 for the first 3 years)
- Duration: 48 months
- Study mode: Full-time
- Annual stipend: UKRI rate - £22,780 AY 2025/26
- Main Supervisor: Dr Abigail Ackerman
This PhD project will focus on the upscaling of low-temperature electrolytic reduction of iron, a process that is currently confined to laboratory research. To achieve full industrial implementation, digital twins will be essential, enabling remote sensing of electrolysis cells to improve efficiency and allow continuous system monitoring. The project will involve developing a lab-scale system equipped with advanced monitoring tools that closely replicate industrial conditions. Alongside this, a digital twin will be created to optimise key parameters—such as energy supply and alkalinity—providing a scalable framework for transitioning the technology to industrial application.
Low temperature electrolysis is an emerging technology that has the potential to revolutionise the ironmaking industry. Iron and steel production currently accounts for around 8% of global CO₂ emissions, with approximately 70% of these emissions resulting from the reduction of iron ore (naturally found as Fe₂O₃). The dominant reduction method—carbon-based blast furnace processing at ~2100 °C—releases oxygen from the ore, which bonds with carbon to form CO₂. On average, producing one tonne of iron this way emits about 1.8 tonnes of CO₂.
Low-temperature electrolysis offers a promising alternative. Over the past decade, this experimental method has shown potential to significantly lower both carbon emissions and energy demand compared with other green technologies such as Direct Reduced Iron (DRI), which uses hydrogen as a reducing agent. Unlike many existing approaches, this method produces only oxygen as a by-product and does not require high-purity ore. This makes it particularly suitable for processing lower-grade iron ores and recovering iron from waste streams such as mine water and tailings.
An important yet underexplored aspect is the application of digital twins to remote sensing of electrolyser cells. In multi-electrolyser systems, digital twins are critical for balancing power input across cells and for predicting component degradation under demanding operating conditions. This project will build on existing digital twin blueprints for electrolysers by developing a robust sensor system that feeds real-time data into a digital twin, designed and implemented by the student. This capability will be central to ongoing upscaling efforts within both the supervisor’s research group and the project’s industrial sponsor.
The aims of this project are:
- Design and build a lab-scale electrolyser system with real-time monitoring capabilities.
- Develop and validate a digital twin model using remote sensing data.
- Optimise key parameters such as energy efficiency and electrolyte alkalinity.
- Demonstrate scalability by comparing lab-scale results with industrial requirements.
- Use these findings to widen the scientific understanding of low temperature electrolytic reduction of iron, including electrode degradation and iron quality
Apply by 06/02/2026
For general enquiries, please contact doctoral-training@royce.ac.uk.
For application-related queries, please contact Dr Annalisa Neri (a.neri14@imperial.ac.uk).
If you have specific technical or scientific queries about this PhD, we encourage you to contact the lead supervisor, Dr. Abigail Ackerman (a.ackerman14@imperial.ac.uk).
This project is suitable for students with a background in materials science, metallurgy and chemical engineering.
Frequently Asked Questions
Do you have questions? Read our frequently asked questions to see how we can help you.
Contacts for enquiries
Postgraduate Research Coordinator
Send an email
Tel: +44 (0)20 7594 2053
Early Career Research Institute
Find out how the Early Career Research Institute can support you during your PhD.