Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Davies J, Matthews J, Dobra R, Wilson G, Allen L, Bossley C, Brendell R, Brugha R, Brown D, Brown S, Cadiente S, Cameron L, Davies G, Dawson C, Elborn S, Hughes D, Longmate J, Macedo P, Pappas L, Pao C, Round C, Ruiz G, Saunders C, Shafi N, Simmonds N, Waller M, Watson Det al., 2023,

    Levelling the playing field through the London Network of the UK Clinical Trials Accelerator Platform

    , Contemporary Clinical Trials Communications, ISSN: 2451-8654
  • Journal article
    Dobra R, Davies J, Elborn S, Kee F, Madge S, Boeri Met al., 2023,

    A discrete choice experiment to quantify the influence of trial features on the decision to participate in cystic fibrosis trials

    , Journal of Cystic Fibrosis, ISSN: 1569-1993
  • Journal article
    Koudstaal T, Funke-Chambour M, Kreuter M, Molyneaux PL, Wijsenbeek MSet al., 2023,

    Pulmonary fibrosis: from pathogenesis to clinical decision-making.

    , Trends Mol Med, Vol: 29, Pages: 1076-1087

    Pulmonary fibrosis (PF) encompasses a spectrum of chronic lung diseases that progressively impact the interstitium, resulting in compromised gas exchange, breathlessness, diminished quality of life (QoL), and ultimately respiratory failure and mortality. Various diseases can cause PF, with their underlying causes primarily affecting the lung interstitium, leading to their referral as interstitial lung diseases (ILDs). The current understanding is that PF arises from abnormal wound healing processes triggered by various factors specific to each disease, leading to excessive inflammation and fibrosis. While significant progress has been made in understanding the molecular mechanisms of PF, its pathogenesis remains elusive. This review provides an in-depth exploration of the latest insights into PF pathophysiology, diagnosis, treatment, and future perspectives.

  • Journal article
    Beattie JW, Rowland-Jones RC, Farys M, Bettany H, Hilton D, Kazarian SG, Byrne Bet al., 2023,

    Application of Raman Spectroscopy to Dynamic Binding Capacity Analysis.

    , Appl Spectrosc, Vol: 77, Pages: 1393-1400

    Protein A affinity chromatography is a key step in isolation of biotherapeutics (BTs) containing fragment crystallizable regions, including monoclonal and bispecific antibodies. Dynamic binding capacity (DBC) analysis assesses how much BT will bind to a protein A column. DBC reduces with column usage, effectively reducing the amount of recovered product over time. Drug regulatory bodies mandate chromatography resin lifetime for BT isolation, through measurement of parameters including DBC, so this feature is carefully monitored in industrial purification pipelines. High-performance affinity chromatography (HPAC) is typically used to assess the concentration of BT, which when loaded to the column results in significant breakthrough of BT in the flowthrough. HPAC gives an accurate assessment of DBC and how this changes over time but only reports on protein concentration, requires calibration for each new BT analyzed, and can only be used offline. Here we utilized Raman spectroscopy and revealed that this approach is at least as effective as both HPAC and ultraviolet chromatogram methods at monitoring DBC of protein A resins. In addition to reporting on protein concentration, the chemical information in the Raman spectra provides information on aggregation status and protein structure, providing extra quality controls to industrial bioprocessing pipelines. In combination with partial least square (PLS) analysis, Raman spectroscopy can be used to determine the DBC of a BT without prior calibration. Here we performed Raman analysis offline in a 96-well plate format, however, it is feasible to perform this inline. This study demonstrates the power of Raman spectroscopy as a significantly improved approach to DBC monitoring in industrial pipelines.

  • Journal article
    Dobra R, Pinnell S, Jones A, Madge S, Simmonds NJ, Davies JCet al., 2023,

    How representative are clinical trial cohorts of the general CF population? Implications for trial planning.

    , J Cyst Fibros

    Understanding the number of patients eligible to participate in research is important to design protocols and define research priorities. We reviewed the records of all patients with CF, age 12+, who receive care at our centre. We assessed their eligibility for trial participation based on common trial inclusion/exclusion criteria. 643 patients were included in the analysis, 31 were modulator ineligible(MI). Only 198(31 %) of the total cohort and 7(23 %) of the MI cohort were eligible for participation based on the hypothetical criteria. The most common reason for ineligibility was ppFEV1 ≥90 % followed by clinical instability, complex comorbidity and anticipated inability to adhere to the protocol. We suggest this would be a useful exercise for centres planning to either participate in, or refer subjects into, upcoming trials to undertake for their own cohort. We also make suggestions for protocol designs that optimise the number of patients who are eligible to participate.

  • Journal article
    King F, Yuen ELH, Bozkurt TO, 2023,

    Border Control: Manipulation of the Host-Pathogen Interface by Perihaustorial Oomycete Effectors.

    , Mol Plant Microbe Interact, ISSN: 0894-0282

    Filamentous plant pathogens, including fungi and oomycetes, cause some of the most devastating plant diseases. These organisms serve as ideal models for understanding the intricate molecular interplay between plants and the invading pathogens. Filamentous pathogens secrete effector proteins via haustoria, specialised structures for infection and nutrient uptake, to suppress the plant immune response and to reprogram plant metabolism. Recent advances in cell biology have provided crucial insights into the biogenesis of the extrahaustorial membrane and the redirection of host endomembrane trafficking towards this interface. Functional studies have shown that an increasing number of oomycete effectors accumulate at the perihaustorial interface to subvert plant focal immune responses, with a particular convergence on targets involved in host endomembrane trafficking. In this review, we summarise the diverse mechanisms of perihaustorial effectors from oomycetes and pinpoint pressing questions regarding their role in manipulating host defense and metabolism at the haustorial interface.

  • Journal article
    Ghani L, Kim S, Ehsan M, Lan B, Poulsen IH, Dev C, Katsube S, Byrne B, Guan L, Loland CJ, Liu X, Im W, Chae PSet al., 2023,

    Melamine-cored glucosides for membrane protein solubilization and stabilization: importance of water-mediated intermolecular hydrogen bonding in detergent performance.

    , Chem Sci, Vol: 14, Pages: 13014-13024, ISSN: 2041-6520

    Membrane proteins play essential roles in a number of biological processes, and their structures are important in elucidating such processes at the molecular level and also for rational drug design and development. Membrane protein structure determination is notoriously challenging compared to that of soluble proteins, due largely to the inherent instability of their structures in non-lipid environments. Micelles formed by conventional detergents have been widely used for membrane protein manipulation, but they are suboptimal for long-term stability of membrane proteins, making downstream characterization difficult. Hence, there is an unmet need for the development of new amphipathic agents with enhanced efficacy for membrane protein stabilization. In this study, we designed and synthesized a set of glucoside amphiphiles with a melamine core, denoted melamine-cored glucosides (MGs). When evaluated with four membrane proteins (two transporters and two G protein-coupled receptors), MG-C11 conferred notably enhanced stability compared to the commonly used detergents, DDM and LMNG. These promising findings are mainly attributed to a unique feature of the MGs, i.e., the ability to form dynamic water-mediated hydrogen-bond networks between detergent molecules, as supported by molecular dynamics simulations. Thus, MG-C11 is the first example of a non-peptide amphiphile capable of forming intermolecular hydrogen bonds within a protein-detergent complex environment. Detergent micelles formed via a hydrogen-bond network could represent the next generation of highly effective membrane-mimetic systems useful for membrane protein structural studies.

  • Journal article
    Davies J, Murphy RA, Pizzato J, Cuthbertson L, Sabnis A, Edwards A, Nolan L, Vorup-Jensen T, Larrouy-Maumus Get al., 2023,

    Antimicrobial peptide glatiramer acetate targets Pseudomonas aeruginosa lipopolysaccharides to breach membranes without altering lipopolysaccharide modification

    , Nature Portfolio Journals Antimicrobials and Resistance
  • Journal article
    Panstruga R, Spanu P, 2023,

    Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions.

    , New Phytol

    According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.

  • Journal article
    Shaw WM, Khalil AS, Ellis T, 2023,

    A Multiplex MoClo Toolkit for Extensive and Flexible Engineering of Saccharomyces cerevisiae.

    , ACS Synth Biol, Vol: 12, Pages: 3393-3405

    Synthetic biology toolkits are one of the core foundations on which the field has been built, facilitating and accelerating efforts to reprogram cells and organisms for diverse biotechnological applications. The yeast Saccharomyces cerevisiae, an important model and industrial organism, has benefited from a wide range of toolkits. In particular, the MoClo Yeast Toolkit (YTK) enables the fast and straightforward construction of multigene plasmids from a library of highly characterized parts for programming new cellular behavior in a more predictable manner. While YTK has cultivated a strong parts ecosystem and excels in plasmid construction, it is limited in the extent and flexibility with which it can create new strains of yeast. Here, we describe a new and improved toolkit, the Multiplex Yeast Toolkit (MYT), that extends the capabilities of YTK and addresses strain engineering limitations. MYT provides a set of new integration vectors and selectable markers usable across common laboratory strains, as well as additional assembly cassettes to increase the number of transcriptional units in multigene constructs, CRISPR-Cas9 tools for highly efficient multiplexed vector integration, and three orthogonal and inducible promoter systems for conditional programming of gene expression. With these tools, we provide yeast synthetic biologists with a powerful platform to take their engineering ambitions to exciting new levels.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1255&limit=10&resgrpMemberPubs=true&resgrpMemberPubs=true&page=1&respub-action=search.html Current Millis: 1701995892895 Current Time: Fri Dec 08 00:38:12 GMT 2023