Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Carrat GR, Haythorne E, Tomas A, Haataja L, Müller A, Arvan P, Piunti A, Cheng K, Huang M, Pullen TJ, Georgiadou E, Stylianides T, Amirruddin NS, Salem V, Distaso W, Cakebread A, Heesom KJ, Lewis PA, Hodson DJ, Briant LJ, Fung ACH, Sessions RB, Alpy F, Kong APS, Benke PI, Torta F, Keong Teo AK, Leclerc I, Solimena M, Wigley DB, Rutter GAet al., 2020,

    The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis

    , Molecular Metabolism, Vol: 40, ISSN: 2212-8778

    OBJECTIVE: Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the β-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates β-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the β-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS: We used isolated islets from mice deleted selectively in the β-cell for Stard10 (βStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS: βStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of âStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in βStard10KO islets. CONCLUSION: Our data indicate that STARD10 binds to, and may transp

  • Journal article
    Crone MA, Priestman M, Ciechonska M, Jensen K, Sharp DJ, Anand A, Randell P, Storch M, Freemont PSet al., 2020,

    Author Correction: A role for Biofoundries in rapid development and validation of automated SARS-CoV-2 clinical diagnostics.

    , Nat Commun, Vol: 11

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • Journal article
    Crone M, Priestman M, Ciechonska M, Jensen K, Sharp D, Anand A, Randell P, Storch M, Freemont Pet al., 2020,

    A role for Biofoundries in rapid development and validation of automated SARS-CoV-2 clinical diagnostics

    , Nature Communications, Vol: 11, Pages: 1-11, ISSN: 2041-1723

    The SARS-CoV-2 pandemic has shown how a rapid rise in demand for patient and community sample testing can quickly overwhelm testing capability globally. With most diagnostic infrastructure dependent on specialized instruments, their exclusive reagent supplies quickly become bottlenecks, creating an urgent need for approaches to boost testing capacity. We address this challenge by refocusing the London Biofoundry onto the development of alternative testing pipelines. Here, we present a reagent-agnostic automated SARS-CoV-2 testing platform that can be quickly deployed and scaled. Using an in-house-generated, open-source, MS2-virus-like particle (VLP) SARS-CoV-2 standard, we validate RNA extraction and RT-qPCR workflows as well as two detection assays based on CRISPR-Cas13a and RT-loop-mediated isothermal amplification (RT-LAMP). In collaboration with an NHS diagnostic testing lab, we report the performance of the overall workflow and detection of SARS-CoV-2 in patient samples using RT-qPCR, CRISPR-Cas13a, and RT-LAMP. The validated RNA extraction and RT-qPCR platform has been installed in NHS diagnostic labs, increasing testing capacity by 1000 samples per day.

  • Journal article
    Graham N, Junghans C, Downes R, Sendall C, Lai H, McKirdy A, Elliott P, Howard R, Wingfield D, Priestman M, Ciechonska M, Cameron L, Storch M, Crone MA, Freemont PS, Randell P, McLaren R, Lang N, Ladhani S, Sanderson F, Sharp DJet al., 2020,

    SARS-CoV-2 infection, clinical features and outcome of COVID-19 in United Kingdom nursing homes

    , Journal of Infection, Vol: 81, Pages: 411-419, ISSN: 0163-4453

    OBJECTIVES: To understand SARS-Co-V-2 infection and transmission in UK nursing homes in order to develop preventive strategies for protecting the frail elderly residents. METHODS: An outbreak investigation involving 394 residents and 70 staff, was carried out in 4 nursing homes affected by COVID-19 outbreaks in central London. Two point-prevalence surveys were performed one week apart where residents underwent SARS-CoV-2 testing and had relevant symptoms documented. Asymptomatic staff from three of the four homes were also offered SARS-CoV-2 testing. RESULTS: Overall, 26% (95% CI 22 to 31) of residents died over the two-month period. All-cause mortality increased by 203% (95% CI 70 to 336) compared with previous years. Systematic testing identified 40% (95% CI 35 to 46) of residents as positive for SARS-CoV-2, and of these 43% (95% CI 34 to 52) were asymptomatic and 18% (95% CI 11 to 24) had only atypical symptoms; 4% (95% CI -1 to 9) of asymptomatic staff also tested positive. CONCLUSIONS: The SARS-CoV-2 outbreak in four UK nursing homes was associated with very high infection and mortality rates. Many residents developed either atypical or no discernible symptoms. A number of asymptomatic staff members also tested positive, suggesting a role for regular screening of both residents and staff in mitigating future outbreaks.

  • Journal article
    Ramlaul K, Palmer C, Nakane T, Aylett Cet al., 2020,

    Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER

    , Journal of Structural Biology, Vol: 211, Pages: 1-9, ISSN: 1047-8477

    Single particle analysis has become a key structural biology technique. Experimental images are extremely noisy, and during iterative refinement it is possible to stably incorporate noise into the reconstruction. Such “over-fitting” can lead to misinterpretation of the structure and flawed biological results. Several strategies are routinely used to prevent over-fitting, the most common being independent refinement of two sides of a split dataset. In this study, we show that over-fitting remains an issue within regions of low local signal-to-noise, despite independent refinement of half datasets. We propose a modification of the refinement process through the application of a local signal-to-noise filter: SIDESPLITTER. We show that our approach can reduce over-fitting for both idealised and experimental data while maintaining independence between the two sides of a split refinement. SIDESPLITTER refinement leads to improved density, and can also lead to improvement of the final resolution in extreme cases where datasets are prone to severe over-fitting, such as small membrane proteins.

  • Journal article
    Zhang X, Carver A, 2020,

    Rad51 filament dynamics and its antagonistic modulators

    , Seminars in Cell and Developmental Biology, ISSN: 1084-9521
  • Journal article
    Kelwick R, Webb A, Freemont P, 2020,

    Biological materials: the next frontier for cell-free synthetic biology

    , Frontiers in Bioengineering and Biotechnology, Vol: 8, ISSN: 2296-4185

    Advancements in cell-free synthetic biology are enabling innovations in sustainable biomanufacturing, that may ultimately shift the global manufacturing paradigm toward localized and ecologically harmonized production processes. Cell-free synthetic biology strategies have been developed for the bioproduction of fine chemicals, biofuels and biological materials. Cell-free workflows typically utilize combinations of purified enzymes, cell extracts for biotransformation or cell-free protein synthesis reactions, to assemble and characterize biosynthetic pathways. Importantly, cell-free reactions can combine the advantages of chemical engineering with metabolic engineering, through the direct addition of co-factors, substrates and chemicals –including those that are cytotoxic. Cell-free synthetic biology is also amenable to automatable design cycles through which an array of biological materials and their underpinning biosynthetic pathways can be tested and optimized in parallel. Whilst challenges still remain, recent convergences between the materials sciences and these advancements in cell-free synthetic biology enable new frontiers for materials research.

  • Journal article
    Crone MA, Priestman M, Ciechonska M, Jensen K, Sharp D, Randell P, Storch M, Freemont Pet al., 2020,

    A new role for Biofoundries in rapid prototyping, development, and validation of automated clinical diagnostic tests for SARS-CoV-2

    <jats:title>Abstract</jats:title><jats:p>The SARS-CoV-2 pandemic has shown how the rapid rise in demand for patient and community sample testing, required for tracing and containing a highly infectious disease, has quickly overwhelmed testing capability globally. With most diagnostic infrastructure dependent on specialised instruments, their exclusive reagent supplies quickly become bottlenecks in times of peak demand, creating an urgent need for novel approaches to boost testing capacity. We address this challenge by refocusing the full synthetic biology stack available at the London Biofoundry onto the development of alternative patient sample testing pipelines. We present a reagent-agnostic automated SARS-CoV-2 testing platform that can be quickly deployed and scaled, and that accepts a diverse range of reagents. Using an in-house-generated, open-source, MS2-virus-like-particle-SARS-CoV-2 standard, we validate RNA extraction and RT-qPCR workflows as well as two novel detection assays based on CRISPR-Cas and Loop-mediated isothermal Amplification (LAMP) approaches. In collaboration with an NHS diagnostic testing lab, we report the performance of the overall workflow and benchmark SARS-CoV-2 detection in patient samples via RT-qPCR, CRISPR-Cas, and LAMP against clinical test sets. The validated RNA extraction and RT-qPCR platform has been installed in NHS diagnostic labs and now contributes to increased patient sample processing in the UK while we continue to refine and develop novel high-throughput diagnostic methods. Finally, our workflows and protocols can be quickly implemented and adapted by members of the Global Biofoundry Alliance and the wider scientific and medical diagnostics community.</jats:p>

  • Journal article
    Beal J, Goñi-Moreno A, Myers C, Hecht A, de Vicente MDC, Parco M, Schmidt M, Timmis K, Baldwin G, Friedrichs S, Freemont P, Kiga D, Ordozgoiti E, Rennig M, Rios L, Tanner K, de Lorenzo V, Porcar Met al., 2020,

    The long journey towards standards for engineering biosystems: Are the Molecular Biology and the Biotech communities ready to standardise?

    , EMBO Reports, Vol: 21, Pages: 1-5, ISSN: 1469-221X

    Synthetic biology needs to adopt sound scientific and industry-like standards in order to achieve its ambitious goals of efficient and accurate engineering of biological systems.

  • Journal article
    Wilkinson MD, Lai H-E, Freemont PS, Baum Jet al., 2020,

    A biosynthetic platform for antimalarial drug discovery

    , Antimicrobial Agents and Chemotherapy, Vol: 64, Pages: 1-9, ISSN: 0066-4804

    Advances in synthetic biology have enabled production of a variety of compounds using bacteria as a vehicle for complex compound biosynthesis. Violacein, a naturally occurring indole pigment with antibiotic properties, can be biosynthetically engineered in Escherichia coli expressing its non-native synthesis pathway. To explore whether this synthetic biosynthesis platform could be used for drug discovery, here we have screened bacterially-derived violacein against the main causative agent of human malaria, Plasmodium falciparum. We show the antiparasitic activity of bacterially-derived violacein against the P. falciparum 3D7 laboratory reference strain as well as drug-sensitive and resistant patient isolates, confirming the potential utility of this drug as an antimalarial. We then screen a biosynthetic series of violacein derivatives against P. falciparum growth. The demonstrated varied activity of each derivative against asexual parasite growth points to potential for further development of violacein as an antimalarial. Towards defining its mode of action, we show that biosynthetic violacein affects the parasite actin cytoskeleton, resulting in an accumulation of actin signal that is independent of actin polymerization. This activity points to a target that modulates actin behaviour in the cell either in terms of its regulation or its folding. More broadly, our data show that bacterial synthetic biosynthesis could become a suitable platform for antimalarial drug discovery with potential applications in future high-throughput drug screening with otherwise chemically-intractable natural products.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1101&limit=10&respub-action=search.html Current Millis: 1611148901507 Current Time: Wed Jan 20 13:21:41 GMT 2021