Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Devenish AJM, Schmitter P, Jellason NP, Esmail N, Abdi NM, Adanu SK, Adolph B, Al-Zubi M, Amali AA, Barron J, Chapman ASA, Chausson AM, Chibesa M, Davies J, Dugan E, Edwards GI, Egeru A, Gebrehiwot T, Griffiths GH, Haile A, Hunga HG, Igbine L, Jarju OM, Keya F, Khalifa M, Ledoux WA, Lejissa LT, Loupa P, Lwanga J, Mapedza ED, Marchant R, McLoud T, Mukuyu P, Musah LM, Mwanza M, Mwitwa J, Neina D, Newbold T, Njogo S, Robinson EJZ, Singini W, Umar BB, Wesonga F, Willcock S, Yang J, Tobias JAet al., 2023,

    One hundred priority questions for the development of sustainable food systems in Sub-Saharan Africa

    , Land, Vol: 12, ISSN: 2073-445X

    Sub-Saharan Africa is facing an expected doubling of human population and tripling of food demand over the next quarter century, posing a range of severe environmental, political, and socio-economic challenges. In some cases, key Sustainable Development Goals (SDGs) are in direct conflict, raising difficult policy and funding decisions, particularly in relation to trade-offs between food production, social inequality, and ecosystem health. In this study, we used a horizon-scanning approach to identify 100 practical or research-focused questions that, if answered, would have the greatest positive impact on addressing these trade-offs and ensuring future productivity and resilience of food-production systems across sub-Saharan Africa. Through direct canvassing of opinions, we obtained 1339 questions from 331 experts based in 55 countries. We then used online voting and participatory workshops to produce a final list of 100 questions divided into 12 thematic sections spanning topics from gender inequality to technological adoption and climate change. Using data on the background of respondents, we show that perspectives and priorities can vary, but they are largely consistent across different professional and geographical contexts. We hope these questions provide a template for establishing new research directions and prioritising funding decisions in sub-Saharan Africa.

  • Journal article
    Savolainen V, 2023,

    Environmental DNA helps reveal reef shark distribution across a remote archipelago

    , Ecological Indicators, Vol: 154, Pages: 1-10, ISSN: 1470-160X

    Environmental DNA (eDNA) methods are being increasingly used in proof-of-concept studies to detect shark species, many populations of which are experiencing severe declines. These methods are widely seen as the future of biodiversity monitoring, but they have yet to become established as routine monitoring techniques for elasmobranch species. Here, we developed species-specific quantitative PCR assays for the detection of grey reef shark (Carcharhinus amblyrhynchos) and silvertip shark (Carcharhinus albimarginatus). We assessed whether species-specific eDNA methods could infer the distribution of the two species around the atolls of the Chagos Archipelago, which, despite being surrounded by a large marine protected area, experience contrasting levels of illegal fishing leading to heterogeneity in shark population densities. We found that eDNA detections were significantly reduced and sporadic around the northern atolls, which are under high pressure from illegal fishing. By contrast eDNA detections of both species were ubiquitous and consistent around the highly protected atoll Diego Garcia. We postulate that current levels of illegal, unreported and unregulated (IUU) fishing is having a significant impact on the shark community in the northern atolls and suppressing local reef shark populations. In the northern atolls we also employed visual and acoustic telemetry techniques to reveal the distribution of reef sharks. We found that despite eDNA samples being taken directly after visual surveys, detection results did not correlate, suggesting a need for further optimisation of eDNA methods for detecting sharks. However, both species were detected by eDNA in sites where they were not observed, highlighting that the scale of the sampling environment must be considered when inferring eDNA results and showing that eDNA methods can be used to fill gaps in data from more established monitoring techniques. We conclude that eDNA methods should be used in combination with oth

  • Journal article
    Egli M, Rapp Wright H, Oloyede O, Francis W, Preston-Allen R, Friedman S, Woodward G, Piel FB, Barron LPet al., 2023,

    A One-Health environmental risk assessment of contaminants of emerging concern in London’s waterways throughout the SARS-CoV-2 pandemic

    , Environment International, Vol: 180, ISSN: 0160-4120

    The SARS-CoV-2 pandemic had huge impacts on global urban populations, activity and health, yet little is known about attendant consequences for urban river ecosystems. We detected significant changes in occurrence and risks from contaminants of emerging concern (CECs) in waterways across Greater London (UK) during the pandemic. We were able to rapidly identify and monitor large numbers of CECs in n=390 samples across 2019–2021 using novel direct-injection liquid chromatography-mass spectrometry methods for scalable targeted analysis, suspect screening and prioritisation of CEC risks. At total of 10,029 measured environmental concentrations (MECs) were obtained for 66 unique CECs. Pharmaceutical MECs decreased during lockdown in 2020 in the R. Thames (p≤0.001), but then increased significantly in 2021 (p ≤0.01). For the tributary rivers, the R. Lee, Beverley Brook, R. Wandle and R. Hogsmill were the most impacted primarily via wastewater treatment plant effluent and combined sewer overflows. For the R. Hosgmill in particular, pharmaceutical MEC trends were generally correlated with NHS prescription statistics, likely reflecting limited wastewater dilution. Suspect screening of ∼1,200 compounds tentatively identified 25 additional CECs at the five impacted sites, including metabolites such as O-desmethylvenlafaxine, an EU Watch List compound. Lastly, risk quotients (RQs) ≥0.1 were calculated for 21 compounds across the whole Greater London freshwater catchment, of which 7 were of medium risk (RQ ≥1.0) and three were in the high-risk category (RQ ≥10), including imidacloprid (RQ=19.6), azithromycin (15.7) and diclofenac (10.5). This is the largest spatiotemporal dataset of its kind for any major capital city globally and the first for Greater London, representing ∼16 % of the population of England, and delivering a foundational One Health case study in the third largest city in Europe across a global pandemic.

  • Journal article
    Haas O, Prentice IC, Harrison SP, 2023,

    The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate

    , BIOGEOSCIENCES, Vol: 20, Pages: 3981-3995, ISSN: 1726-4170
  • Journal article
    Kvasnica J, Matula R, Rejzek M, Ewers RM, Riutta T, Turner EC, Nilus R, Svatek Met al., 2023,

    Multi-stemming enhances tree survival and growth in Borneo's logged forests

    , FOREST ECOLOGY AND MANAGEMENT, Vol: 544, ISSN: 0378-1127
  • Journal article
    Dunne EM, Thompson SED, Butler RJ, Rosindell J, Close RAet al., 2023,

    Mechanistic neutral models show that sampling biases drive the apparent explosion of early tetrapod diversity

    , Nature Ecology and Evolution, Vol: 7, Pages: 1480-1489, ISSN: 2397-334X

    Estimates of deep-time biodiversity typically rely on statistical methods to mitigate the impacts of sampling biases in the fossil record. However, these methods are limited by the spatial and temporal scale of the underlying data. Here we use a spatially explicit mechanistic model, based on neutral theory, to test hypotheses of early tetrapod diversity change during the late Carboniferous and early Permian, critical intervals for the diversification of vertebrate life on land. Our simulations suggest that apparent increases in early tetrapod diversity were not driven by local endemism following the ‘Carboniferous rainforest collapse’. Instead, changes in face-value diversity can be explained by variation in sampling intensity through time. Our results further demonstrate the importance of accounting for sampling biases in analyses of the fossil record and highlight the vast potential of mechanistic models, including neutral models, for testing hypotheses in palaeobiology.

  • Journal article
    Zhou L, Liu F, Tan Y, Fortin C, Huang L, Campbell PGCet al., 2023,

    Aluminum-induced changes in the net carbon fixation and carbon decomposition of a nitrogen-fixing cyanobacterium Trichodesmium erythraeum

    , Biogeochemistry, Vol: 165, Pages: 277-290, ISSN: 0168-2563
  • Journal article
    Laurenceau-Cornec EC, Mongin M, Trull TW, Bressac M, Cavan EL, Bach LT, Le Moigne FAC, Planchon F, Boyd PWet al., 2023,

    Concepts Toward a Global Mechanistic Mapping of Ocean Carbon Export

    , GLOBAL BIOGEOCHEMICAL CYCLES, Vol: 37, ISSN: 0886-6236
  • Journal article
    Gonzalez A, Vihervaara P, Balvanera P, Bates AE, Bayraktarov E, Bellingham PJ, Bruder A, Campbell J, Catchen MD, Cavender-Bares J, Chase J, Coops N, Costello MJ, Dornelas M, Dubois G, Duffy EJ, Eggermont H, Fernandez N, Ferrier S, Geller GN, Gill M, Gravel D, Guerra CA, Guralnick R, Harfoot M, Hirsch T, Hoban S, Hughes AC, Hunter ME, Isbell F, Jetz W, Juergens N, Kissling WD, Krug CB, Le Bras Y, Leung B, Londono-Murcia MC, Lord J-M, Loreau M, Luers A, Ma K, Macdonald AJ, Mcgeoch M, Millette KL, Molnar Z, Mori AS, Muller-Karger FE, Muraoka H, Navarro L, Newbold T, Niamir A, Obura D, O'Connor M, Paganini M, Pereira H, Poisot T, Pollock LJ, Purvis A, Radulovici A, Rocchini D, Schaepman M, Schaepman-Strub G, Schmeller DS, Schmiedel U, Schneider FD, Shakya MM, Skidmore A, Skowno AL, Takeuchi Y, Tuanmu M-N, Turak E, Turner W, Urban MC, Urbina-Cardona N, Valbuena R, van Havre B, Wright Eet al., 2023,

    A global biodiversity observing system to unite monitoring and guide action

    , NATURE ECOLOGY & EVOLUTION, ISSN: 2397-334X
  • Journal article
    Rosindell J, 2023,

    Indicators to monitor the status of the Tree of Life

    , Conservation Biology, ISSN: 0888-8892
  • Journal article
    Ruehr S, Keenan TF, Williams C, Zhou Y, Lu X, Bastos A, Canadell JG, Prentice IC, Sitch S, Terrer Cet al., 2023,

    Evidence and attribution of the enhanced land carbon sink

    , Nature Reviews Earth & Environment, Vol: 4, Pages: 518-534, ISSN: 2662-138X

    Climate change has been partially mitigated by an increasing net land carbon sink in the terrestrial biosphere; understanding the processes that drive the land carbon sink is thus essential for protecting, managing, and projecting this important ecosystem service. In this Review, we examine evidence for an enhanced land carbon sink and attribute the observed response to drivers and processes. The land carbon sink has doubled from 1.2 ± 0.5 PgC yr-1 in the 1960s to 3.1 ± 0.6 PgC yr-1 in the 2010s. This trend results largely from carbon dioxide (CO2) fertilization increasing photosynthesis (driving an increase in the annual land carbon sink of >2PgC globally since 1900), mainly in tropical forest regions, and elevated temperatures reducing cold-limitation, mainly at higher latitudes. Continued long term land carbon sequestration is possible through the end of this century under multiple emissions scenarios, especially if nature-based climate solutions and appropriate ecosystem management are deployed. A new generation of globally distributed field experiments are needed to improve understanding of future carbon sink potential by measuring belowground carbon release, the response to CO2 enrichment, and long-term shifts in carbon allocation and turnover .

  • Journal article
    Alif Ž, Crees JJ, White RL, Quinlan MM, Kennerley RJ, Dando TR, Turvey STet al., 2023,

    Understanding local knowledge and attitudes toward potential reintroduction of a former British wetland bird

    , People and Nature, Vol: 5, Pages: 1220-1233, ISSN: 2575-8314

    Stakeholder acceptance and support is essential for long-term success in species reintroductions, and assessing social feasibility of reintroductions within human-occupied landscapes is an integral component of effective decision-making.The Dalmatian pelican Pelecanus crispus is an extirpated British bird, and possible pelican reintroduction to British wetlands is under discussion. Any reintroduction planning must first assess local community awareness, attitudes, and acceptance of potential pelican arrival and associated habitat management, as part of wider socio-ecological feasibility assessment. Pelicans are distinctive species with potential to increase support for wetland conservation, but might provoke conflict through real or perceived competition with landscape users such as fishers; such conflict is already seen within Britain between fishers and cormorants.We conducted an online survey of 590 respondents in the Somerset Levels and East Anglian Fens, Britain's largest wetland landscapes, to understand local views on pelican reintroduction, other reintroductions and wetland restoration, and to investigate correlates of varying attitudes toward coexistence with pelicans and five other waterbirds (grey heron, Eurasian bittern, little egret, common crane, great cormorant).Respondents had generally positive views about previous reintroductions of other species, and had overall positive attitudes toward all six waterbirds. Two-thirds of respondents supported or strongly supported pelican reintroduction, but both benefits and concerns were identified in relation to its possible reintroduction. Anglers and hunters were more likely to hold negative attitudes toward pelicans, other waterbirds and wetland restoration. However, although anglers raised more concerns, they were not more likely to be unsupportive toward reintroduction. More socio-demographic predictors were associated with negative attitudes toward restoration required to establish pelican habitat, sugges

  • Journal article
    Bellotto-Trigo FC, Uezu A, Hatfield JH, Morante-Filho JC, dos Anjos L, Develey PF, Clegg T, Orme DL, Banks-Leite Cet al., 2023,

    Intraspecific variation in sensitivity to habitat fragmentation is influenced by forest cover and distance to the range edge

    , BIOLOGICAL CONSERVATION, Vol: 284, ISSN: 0006-3207
  • Journal article
    Fattorini R, Egan PA, Rosindell J, Farrell IW, Stevenson PCet al., 2023,

    Grayanotoxin I variation across tissues and species of Rhododendron suggests pollinator-herbivore defence trade-offs

    , Phytochemistry: the international journal of plant chemistry, plant biochemistry and molecular biology, Vol: 212, Pages: 1-7, ISSN: 0031-9422

    Grayanotoxin I (GTX I) is a major toxin in leaves of Rhododendron species, where it provides a defence against insect and vertebrate herbivores. Surprisingly, it is also present in R. ponticum nectar, and this can hold important implications for plant-pollinator mutualisms. However, knowledge of GTX I distributions across the genus Rhododendron and in different plant materials is currently limited, despite the important ecological function of this toxin. Here we characterise GTX I expression in the leaves, petals, and nectar of seven Rhododendron species. Our results indicated interspecific variation in GTX I concentration across all species. GTX I concentrations were consistently higher in leaves compared to petals and nectar. Our findings provide preliminary evidence for phenotypic correlation between GTX I concentrations in defensive tissues (leaves and petals) and floral rewards (nectar), suggesting that Rhododendron species may commonly experience functional trade-offs between herbivore defence and pollinator attraction.

  • Journal article
    Pearse WD, Stemkovski M, Lee BRR, Primack RB, Lee SDet al., 2023,

    Consistent, linear phenological shifts across a century of observations in South Korea

    , NEW PHYTOLOGIST, Vol: 239, Pages: 824-829, ISSN: 0028-646X
  • Journal article
    Sethi SS, Bick A, Ewers RM, Klinck H, Ramesh V, Tuanmu M-N, Coomes DAet al., 2023,

    Limits to the accurate and generalizable use of soundscapes to monitor biodiversity

    , Nature Ecology and Evolution, Vol: 7, Pages: 1373-1378, ISSN: 2397-334X

    Although eco-acoustic monitoring has the potential to deliver biodiversity insight on vast scales, existing analytical approaches behave unpredictably across studies. We collated 8,023 audio recordings with paired manual avifaunal point counts to investigate whether soundscapes could be used to monitor biodiversity across diverse ecosystems. We found that neither univariate indices nor machine learning models were predictive of species richness across datasets but soundscape change was consistently indicative of community change. Our findings indicate that there are no common features of biodiverse soundscapes and that soundscape monitoring should be used cautiously and in conjunction with more reliable in-person ecological surveys.

  • Journal article
    Dobson S, Dunning J, Burke T, Chik HYJ, Schroeder Jet al., 2023,

    Indirect genetic effects increase heritability estimates for male and female extra-pair reproduction

    , EVOLUTION, Vol: 77, Pages: 1893-1901, ISSN: 0014-3820
  • Journal article
    Clive J, Flintham E, Savolainen V, 2023,

    Same-sex sociosexual behaviour is widespread and heritable in male rhesus macaques

    , Nature Ecology and Evolution, Vol: 7, Pages: 1287-1301, ISSN: 2397-334X

    Numerous reports have documented the occurrence of same-sex sociosexual behaviour (SSB) across animal species. However, the distribution of the behaviour within a species is needed to test the theories describing its evolution and maintenance, in particular whether the behaviour is heritable and can therefore evolve by natural selection. Here, we collected detailed observations across three years of social and mounting behaviour of 236 male semi-wild rhesus macaques, which we combined with a pedigree dating back to 1938, to show that SSB was both repeatable (19.35%) and heritable (6.4%). Demographic factors (age and group structure) explained SSB variation only marginally. Furthermore, we found a positive genetic correlation between same-sex mounter and mountee activities, indicating a common basis to different forms of SSB. Finally, we found no evidence of fitness costs to SSB, but show instead that the behaviour mediated coalitionary partnerships that have been linked with improved reproductive success. Together, our results demonstrate that SSB is frequent in rhesus macaques, can evolve, and is not costly, indicating that SSB may be a common feature of primate reproductive ecology.

  • Journal article
    Johansson J, Arce A, Gill R, 2023,

    How competition between overlapping generations can influence optimal egg-laying strategies in annual social insects

    , Oecologia, Vol: 202, Pages: 535-547, ISSN: 0029-8549

    Annual social insects are an integral functional group of organisms, particularly in temperate environments. An emblematic part of their annual cycle is the social phase, during which the colony-founding queen rears workers that later assist her in rearing sexual progeny (gynes and drones). In many annual social insects, such as species of bees, wasps, and other groups, developing larvae are provisioned gradually as they develop (progressive provisioning) leading to multiple larval generations being reared simultaneously. We present a model for how the queen in such cases should optimize her egg-laying rate throughout the social phase depending on number-size trade-offs, colony age-structure, and energy balance. Complementing previous theory on optimal allocation between workers vs. sexuals in annual social insects and on temporal egg-laying patterns in solitary insects, we elucidate how resource competition among overlapping larval generations can influence optimal egg-laying strategies. With model parameters informed by knowledge of a common bumblebee species, the optimal egg-laying schedule consists of two temporally separated early broods followed by a more continuous rearing phase, matching empirical observations. However, eggs should initially be laid continuously at a gradually increasing rate when resources are scarce or mortality risks high and in cases where larvae are fully supplied with resources at the egg-laying stage (mass-provisioning). These factors, alongside sexual:worker body size ratios, further determine the overall trend in egg-laying rates over the colony cycle. Our analysis provides an inroad to study and mechanistically understand variation in colony development strategies within and across species of annual social insects.

  • Journal article
    Granville NR, Banks-Leite C, 2023,

    Mangrove propagules are limited in their capacity to disperse across long distances

    , JOURNAL OF TROPICAL ECOLOGY, Vol: 39, ISSN: 0266-4674
  • Journal article
    de Lorm TA, Horswill C, Rabaiotti D, Ewers RM, Groom RJ, Watermeyer J, Woodroffe Ret al., 2023,

    Optimizing the automated recognition of individual animals to support population monitoring

    , Ecology and Evolution, Vol: 13, ISSN: 2045-7758

    Reliable estimates of population size and demographic rates are central to assessing the status of threatened species. However, obtaining individual-based demographic rates requires long-term data, which is often costly and difficult to collect. Photographic data offer an inexpensive, noninvasive method for individual-based monitoring of species with unique markings, and could therefore increase available demographic data for many species. However, selecting suitable images and identifying individuals from photographic catalogs is prohibitively time-consuming. Automated identification software can significantly speed up this process. Nevertheless, automated methods for selecting suitable images are lacking, as are studies comparing the performance of the most prominent identification software packages. In this study, we develop a framework that automatically selects images suitable for individual identification, and compare the performance of three commonly used identification software packages; Hotspotter, I3S-Pattern, and WildID. As a case study, we consider the African wild dog, Lycaon pictus, a species whose conservation is limited by a lack of cost-effective large-scale monitoring. To evaluate intraspecific variation in the performance of software packages, we compare identification accuracy between two populations (in Kenya and Zimbabwe) that have markedly different coat coloration patterns. The process of selecting suitable images was automated using convolutional neural networks that crop individuals from images, filter out unsuitable images, separate left and right flanks, and remove image backgrounds. Hotspotter had the highest image-matching accuracy for both populations. However, the accuracy was significantly lower for the Kenyan population (62%), compared to the Zimbabwean population (88%). Our automated image preprocessing has immediate application for expanding monitoring based on image matching. However, the difference in accuracy between population

  • Journal article
    Dong N, Dechant B, Wang H, Wright IJ, Prentice ICet al., 2023,

    Global leaf-trait mapping based on optimality theory

    , Global Ecology and Biogeography, Vol: 32, Pages: 1152-1162, ISSN: 1466-822X

    AimLeaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine-learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco-evolutionary optimality theory, to yield predictions of spatio-temporal patterns in leaf traits that can be independently evaluated.InnovationGlobal patterns of community-mean specific leaf area (SLA) and photosynthetic capacity (Vcmax) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area (Narea) and mass (Nmass) are inferred using their (previously derived) empirical relationships to SLA and Vcmax. Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf-level measurements and/or remote-sensing methods, which are an increasingly important source of information on spatio-temporal variation in plant traits.Main conclusionsModel predictions evaluated against site-mean trait data from > 2,000 sites in the Plant Trait database yielded R2 = 73% for SLA, 38% for Nmass and 28% for Narea. Declining species-level Nmass, and increasing community-level SLA, have both been recently reported and were both correctly predicted. Leaf-trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf-trait responses to environmental change.

  • Journal article
    Hunt ESE, Felice RN, Tobias JA, Goswami Aet al., 2023,

    Ecological and life-history drivers of avian skull evolution

    , EVOLUTION, Vol: 77, Pages: 1720-1729, ISSN: 0014-3820
  • Other
    Mengoli G, Harrison SP, Prentice IC, 2023,

    Supplementary material to "A global function of climatic aridity accounts for soil moisture stress on carbon assimilation"

  • Journal article
    Tan C, Trew J, Peacock T, Mok KY, Hart C, Lau K, Ni D, Orme CDL, Ransome E, Pearse W, Coleman C, Bailey D, Thakur N, Quantrill J, Sukhova K, Richard D, Kahane L, Woodward G, Bell T, Worledge L, Nunez-Mino J, Barclay W, van Dorp L, Balloux F, Savolainen Vet al., 2023,

    Genomic screening of 16 UK native bat species through conservationist networks uncovers coronaviruses with zoonotic potential

    , Nature Communications, Vol: 14, Pages: 1-13, ISSN: 2041-1723

    There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine (two novel) complete genomes across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk is unknown and warrants closer surveillance.

  • Journal article
    Tobias JA, 2023,

    First record of Campina Thrush Turdus arthuri for Bolivia

    , Bulletin of the British Ornithologists' Club, Vol: 143, Pages: 260-264, ISSN: 0007-1595

    An adult thrush trapped in a mist-net near Guayaramerin, dpto. Beni, Bolivia, in April 2005, was initially identified as Black-billed Thrush Turdus ignobilis although several subtle plumage features appeared to differ from the expected race T. i. debilis. These features match those of Campina Thrush T. arthuri, a cryptic species subsequently split from Black-billed Thrush based on molecular evidence, and now known to occur widely in shrubby thickets and stunted campina forest across much of Amazonia. This record extends the known distribution of T. arthuri south-west from the nearest known localities in Amazonas and Rondônia, Brazil. T. arthuri is presumably resident in north-west dpto. Beni in suitable habitat, and potentially occurs elsewhere in Bolivia from Pando to eastern Santa Cruz in similar campina-like habitats associated with weathered outcrops of the Brazilian Shield.

  • Journal article
    Kenna D, Graystock P, Gill R, 2023,

    Toxic temperatures: bee behaviours exhibit divergent pesticide toxicity relationships with warming

    , Global Change Biology, Vol: 29, Pages: 2981-2998, ISSN: 1354-1013

    Climate change and agricultural intensification are exposing insect pollinators to temperature extremes and increasing pesticide usage. Yet, we lack good quantification of how temperature modulates the sublethal effects of pesticides on behaviours vital for fitness and pollination performance. Consequently, we are uncertain if warming decreases or increases the severity of different pesticide impacts, and whether separate behaviours vary in the direction of response. Quantifying these interactive effects is vital in forecasting pesticide risk across climate regions and informing pesticide application strategies and pollinator conservation. This multi-stressor study investigated the responses of six functional behaviours of bumblebees when exposed to either a neonicotinoid (imidacloprid) or a sulfoximine (sulfoxaflor) across a standardised low, mid, and high temperature. We found the neonicotinoid had a significant effect on five of the six behaviours, with a greater effect at the lower temperature(s) when measuring responsiveness, the likelihood of movement, walking rate, and food consumption rate. In contrast, the neonicotinoid had a greater impact on flight distance at the higher temperature. Our findings show that different organismal functions can exhibit divergent thermal responses, with some pesticide-affected behaviours showing greater impact as temperatures dropped, and others as temperatures rose. We must therefore account for environmental context when determining pesticide risk. Moreover, we found evidence of synergistic effects, with just a 3°C increase causing a sudden drop in flight performance, despite seeing no effect of pesticide at the two lower temperatures. Our findings highlight the importance of multi-stressor studies to quantify threats to insects, which will help to improve dynamic evaluations of population tipping points and spatiotemporal risks to biodiversity across different climate regions.

  • Journal article
    Matthews TJ, Wayman JP, Whittaker RJ, Cardoso P, Hume JP, Sayol F, Proios K, Martin TE, Baiser B, Borges PAV, Kubota Y, dos Anjos L, Tobias JA, Soares FC, Si X, Ding P, Mendenhall CD, Sin YCK, Rheindt FE, Triantis KA, Guilhaumon F, Watson DM, Brotons L, Battisti C, Chu O, Rigal Fet al., 2023,

    A global analysis of avian island diversity-area relationships in the Anthropocene

    , ECOLOGY LETTERS, Vol: 26, Pages: 965-982, ISSN: 1461-023X
  • Journal article
    Germain RR, Feng S, Chen G, Graves GR, Tobias JA, Rahbek C, Lei F, Fjeldsa J, Hosner PA, Gilbert MTP, Zhang G, Nogues-Bravo Det al., 2023,

    Species-specific traits mediate avian demographic responses under past climate change

    , NATURE ECOLOGY & EVOLUTION, Vol: 7, Pages: 862-872, ISSN: 2397-334X
  • Journal article
    Tan S, Wang H, Prentice IC, Yang K, Nóbrega RLB, Liu X, Wang Y, Yang Yet al., 2023,

    Towards a universal evapotranspiration model based on optimality principles

    , Agricultural and Forest Meteorology, Vol: 336, Pages: 1-11, ISSN: 0168-1923

    Natural resource management requires knowledge of terrestrial evapotranspiration (ET). Most existing numeric models for ET include multiple plant- or ecosystem-type specific parameters that require calibration. This is a significant source of uncertainty under changing environmental conditions. A novel ET model with no type−specific parameters was developed recently. Based on the coupling the diffusion (via stomata) of water and carbon dioxide (CO2), this model predicts canopy conductance based on environmental conditions using eco-evolutionary optimality principles that apply to all plant types. Transpiration (T) and ET are calculated from canopy conductance using the Penman-Monteith equation for T and a universal empirical function for the T:ET ratio. Here, the model is systematically evaluated at globally distributed eddy-covariance sites and river basins. Site-scale modelled ET agrees well with flux data (r = 0.81, root mean square error = 0.73 mm day–1 in 23,623 records) and modelled ET in 39 river basins agrees well with the ET estimated by monthly water budget using two runoff datasets (r = 0.62 and 0.66, respectively). Modelled global patterns of ET are consistent with existing global ET products. The model's universality, parsimony and accuracy combine to indicate a broad potential field of application in resource management and global change science.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=562&limit=30&resgrpMemberPubs=true&resgrpMemberPubs=true&page=4&respub-action=search.html Current Millis: 1726980374481 Current Time: Sun Sep 22 05:46:14 BST 2024