guy poncing

Synthetic Biology underpins advances in the bioeconomy

Biological systems - including the simplest cells - exhibit a broad range of functions to thrive in their environment. Research in the Imperial College Centre for Synthetic Biology is focused on the possibility of engineering the underlying biochemical processes to solve many of the challenges facing society, from healthcare to sustainable energy. In particular, we model, analyse, design and build biological and biochemical systems in living cells and/or in cell extracts, both exploring and enhancing the engineering potential of biology. 

As part of our research we develop novel methods to accelerate the celebrated Design-Build-Test-Learn synthetic biology cycle. As such research in the Centre for Synthetic Biology highly multi- and interdisciplinary covering computational modelling and machine learning approaches; automated platform development and genetic circuit engineering ; multi-cellular and multi-organismal interactions, including gene drive and genome engineering; metabolic engineering; in vitro/cell-free synthetic biology; engineered phages and directed evolution; and biomimetics, biomaterials and biological engineering.

Publications

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Bernier L, Stan G, Junier P, Stanley Cet al., 2022,

    Spores-on-a-chip: new frontiers for spore research

    , Trends in Microbiology, ISSN: 0966-842X

    In recent years, microfluidic technologies have become widespread in biological science. However, the suitability of this technique for understanding different aspects of spore research has hardly been considered. Herein, we review recent developments in 'spores-on-a-chip' technologies, highlighting how they could be exploited to drive new frontiers in spore research.

  • Journal article
    Sechkar K, Tuza ZA, Stan G-B,

    A linear programming-based strategy to save pipette tips in automated DNA assembly

    , Synthetic Biology, ISSN: 2397-7000

    Laboratory automation and mathematical optimization are key to improving the efficiency of synthetic biology research.While there are algorithms optimizing the construct designs and synthesis strategies for DNA assembly, the optimizationof how DNA assembly reaction mixes are prepared remains largely unexplored. Here, we focus on reducing the pipettetip consumption of a liquid-handling robot as it delivers DNA parts across a multi-well plate where several constructsare being assembled in parallel. We propose a linear programming formulation of this problem based on the capacitatedvehicle routing problem, as well as an algorithm which applies a linear programming solver to our formulation, henceproviding a strategy to prepare a given set of DNA assembly mixes using fewer pipette tips. The algorithm performedwell in randomly generated and real-life scenarios concerning several modular DNA assembly standards, proving capableof reducing the pipette tip consumption by up to 59% in large-scale cases. Combining automatic process optimizationand robotic liquid-handling, our strategy promises to greatly improve the efficiency of DNA assembly, either used aloneor combined with other algorithmic DNA assembly optimization methods.

  • Journal article
    Climent-Catala A, Ouldridge TE, Stan G-BV, Bae Wet al., 2022,

    Building an RNA-based toggle switch using inhibitory RNA aptamers

    , ACS Synthetic Biology, Vol: 11, Pages: 562-569, ISSN: 2161-5063

    Synthetic RNA systems offer unique advantages such as faster response, increased specificity, and programmability compared to conventional protein-based networks. Here, we demonstrate an in vitro RNA-based toggle switch using RNA aptamers capable of inhibiting the transcriptional activity of T7 or SP6 RNA polymerases. The activities of both polymerases are monitored simultaneously by using Broccoli and malachite green light-up aptamer systems. In our toggle switch, a T7 promoter drives the expression of SP6 inhibitory aptamers, and an SP6 promoter expresses T7 inhibitory aptamers. We show that the two distinct states originating from the mutual inhibition of aptamers can be toggled by adding DNA sequences to sequester the RNA inhibitory aptamers. Finally, we assessed our RNA-based toggle switch in degrading conditions by introducing controlled degradation of RNAs using a mix of RNases. Our results demonstrate that the RNA-based toggle switch could be used as a control element for nucleic acid networks in synthetic biology applications.

  • Journal article
    Juritz J, Poulton JM, Ouldridge TE, 2022,

    Minimal mechanism for cyclic templating of length-controlled copolymers under isothermal conditions

    , Journal of Chemical Physics, Vol: 156, ISSN: 0021-9606

    The production of sequence-specific copolymers using copolymer templates is fundamental to the synthesis of complex biological molecules and is a promising framework for the synthesis of synthetic chemical complexes. Unlike the superficially similar process of self-assembly, however, the development of synthetic systems that implement templated copying of copolymers under constant environmental conditions has been challenging. The main difficulty has been overcoming product inhibition or the tendency of products to adhere strongly to their templates—an effect that gets exponentially stronger with the template length. We develop coarse-grained models of copolymerization on a finite-length template and analyze them through stochastic simulation. We use these models first to demonstrate that product inhibition prevents reliable template copying and then ask how this problem can be overcome to achieve cyclic production of polymer copies of the right length and sequence in an autonomous and chemically driven context. We find that a simple addition to the model is sufficient to generate far longer polymer products that initially form on, and then separate from, the template. In this approach, some of the free energy of polymerization is diverted into disrupting copy–template bonds behind the leading edge of the growing copy copolymer. By additionally weakening the final copy–template bond at the end of the template, the model predicts that reliable copying with a high yield of full-length, sequence-matched products is possible over large ranges of parameter space, opening the way to the engineering of synthetic copying systems that operate autonomously.

  • Journal article
    Dwijayanti A, Storch M, Stan G-B, Baldwin GSet al., 2022,

    A modular RNA interference system for multiplexed gene regulation

    , Nucleic Acids Research, Vol: 50, ISSN: 0305-1048

    The rational design and realisation of simple-to-use genetic control elements that are modular, orthogonal and robust is essential to the construction of predictable and reliable biological systems of increasing complexity. To this effect, we introduce modular Artificial RNA interference (mARi), a rational, modular and extensible design framework that enables robust, portable and multiplexed post-transcriptional regulation of gene expression in Escherichia coli. The regulatory function of mARi was characterised in a range of relevant genetic contexts, demonstrating its independence from other genetic control elements and the gene of interest, and providing new insight into the design rules of RNA based regulation in E. coli, while a range of cellular contexts also demonstrated it to be independent of growth-phase and strain type. Importantly, the extensibility and orthogonality of mARi enables the simultaneous post-transcriptional regulation of multi-gene systems as both single-gene cassettes and poly-cistronic operons. To facilitate adoption, mARi was designed to be directly integrated into the modular BASIC DNA assembly framework. We anticipate that mARi-based genetic control within an extensible DNA assembly framework will facilitate metabolic engineering, layered genetic control, and advanced genetic circuit applications.

  • Journal article
    Slutsky I, Schratt G, Stan G-B, Nelson S, Bruggeman FJet al., 2021,

    Homeostasis

    , CELL SYSTEMS, Vol: 12, Pages: 1124-1126, ISSN: 2405-4712
  • Journal article
    Boo AR, Ledesma Amaro R, Stan G-B, 2021,

    Quorum sensing in synthetic biology: a review

    , Current Opinion in Systems Biology, Vol: 28, Pages: 1-14, ISSN: 2452-3100

    In nature, quorum sensing is one of the mechanism bacterial populations use to communicate withtheir own species or across species to coordinate behaviours. For the last 20 years, synthetic biologistshave recognised the remarkable properties of quorum sensing to build genetic circuits responsive topopulation density. This has led to progress in designing dynamic, coordinated and sometimes multicellular systems for bio-production in metabolic engineering and for increased spatial and temporalcomplexity in synthetic biology. In this review, we highlight recent works focused on using quorumsensing to engineer cell-cell behaviour.

  • Journal article
    Liu H, Hong F, Smith F, Goertz J, Ouldridge T, Stevens MM, Yan H, Šulc Pet al., 2021,

    Kinetics of RNA and RNA:DNA hybrid strand displacement

    , ACS Synthetic Biology, Vol: 10, Pages: 3066-3073, ISSN: 2161-5063

    In nucleic acid nanotechnology, strand displacement is a widely used mechanism where one strand from a hybridized duplex is exchanged with an invading strand that binds to a toehold, a single-stranded region on the duplex. It is used to perform logic operations on a molecular level, initiate cascaded reactions, or even for in vivo diagnostics and treatments. While systematic experimental studies have been carried out to probe the kinetics of strand displacement in DNA with different toehold lengths, sequences, and mismatch positions, there has not been a comparable investigation of RNA or RNA-DNA hybrid systems. Here, we experimentally study how toehold length, toehold location (5' or 3' end of the strand), and mismatches influence the strand displacement kinetics. We observe reaction acceleration with increasing toehold length and placement of the toehold at the 5' end of the substrate. We find that mismatches closer to the interface of toehold and duplex slow down the reaction more than remote mismatches. A comparison of RNA and DNA displacement with hybrid displacement (RNA invading DNA or DNA invading RNA) is partly explainable by the thermodynamic stabilities of the respective toehold regions, but also suggests that the rearrangement from B-form to A-form helix in the case of RNA invading DNA might play a role in the kinetics.

  • Journal article
    Perrino G, Hadjimitsis A, Ledesma Amaro R, Stan G-Bet al., 2021,

    Control engineering and synthetic biology: Working in synergy for the analysis and control of microbial systems

    , Current Opinion in Microbiology, Vol: 62, Pages: 68-75, ISSN: 1369-5274

    The implementation of novel functionalities in living cells is a key aspect of synthetic biology. In the last decade, the field of synthetic biology has made progress working in synergy with control engineering, whose solid framework has provided concepts and tools to analyse biological systems and guide their design. In this review, we briefly highlight recent work focused on the application of control theoretical concepts and tools for the analysis and design of synthetic biology systems in microbial cells.

  • Journal article
    Poulton JM, Ouldridge TE, 2021,

    Edge-effects dominate copying thermodynamics for finite-length molecular oligomers

    , New Journal of Physics, Vol: 23, Pages: 1-14, ISSN: 1367-2630

    A signature feature of living systems is their ability to produce copies ofinformation-carrying molecular templates such as DNA. These copies are madeby assembling a set of monomer molecules into a linear macromolecule with a sequence determined by the template. The copies produced have a finite length –they are often “oligomers”, or short polymers – and must eventually detach fromtheir template. We explore the role of the resultant initiation and termination ofthe copy process in the thermodynamics of copying. By splitting the free-energychange of copy formation into informational and chemical terms, we show that,surprisingly, copy accuracy plays no direct role in the overall thermodynamics. Instead, finite-length templates function as highly-selective engines that interconvertchemical and information-based free energy stored in the environment; it is thermodynamically costly to produce outputs that are more similar to the oligomersin the environment than sequences obtained by randomly sampling monomers. Incontrast to previous work that neglects separation, any excess free energy stored incorrelations between copy and template sequences is lost when the copy fully detaches and mixes with the environment; these correlations therefore do not featurein the overall thermodynamics. Previously-derived constraints on copy accuracytherefore only manifest as kinetic barriers experienced while the copy is templateattached; these barriers are easily surmounted by shorter oligomers.

  • Journal article
    Baig H, Fontanarossa P, Kulkarni V, McLaughlin J, Vaidyanathan P, Bartley B, Bhakta S, Bhatia S, Bissell M, Clancy K, Cox RS, Goñi Moreno A, Gorochowski T, Grunberg R, Lee J, Luna A, Madsen C, Misirli G, Nguyen T, Le Novere N, Palchick Z, Pocock M, Roehner N, Sauro H, Scott-Brown J, Sexton JT, Stan G-B, Tabor JJ, Terry L, Vazquez Vilar M, Voigt CA, Wipat A, Zong D, Zundel Z, Beal J, Myers Cet al., 2021,

    Synthetic biology open language visual (SBOL Visual) version 2.3

    , Journal of Integrative Bioinformatics, Vol: 18, ISSN: 1613-4516

    People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.3 of SBOL Visual, which builds on the prior SBOL Visual 2.2 in several ways. First, the specification now includes higher-level "interactions with interactions," such as an inducer molecule stimulating a repression interaction. Second, binding with a nucleic acid backbone can be shown by overlapping glyphs, as with other molecular complexes. Finally, a new "unspecified interaction" glyph is added for visualizing interactions whose nature is unknown, the "insulator" glyph is deprecated in favor of a new "inert DNA spacer" glyph, and the polypeptide region glyph is recommended for showing 2A sequences.

  • Journal article
    Sengar A, Ouldridge TE, Henrich O, Rovigatti L, Sulc Pet al., 2021,

    A primer on the oxDNA model of DNA: When to use it, how to simulate it and how to interpret the results

    , Frontiers in Molecular Biosciences, Vol: 8, Pages: 1-22, ISSN: 2296-889X

    The oxDNA model of DNA has been applied widely to systems in biology,biophysics and nanotechnology. It is currently available via two independentopen source packages. Here we present a set of clearly-documented exemplarsimulations that simultaneously provide both an introduction to simulating themodel, and a review of the model's fundamental properties. We outline howsimulation results can be interpreted in terms of -- and feed into ourunderstanding of -- less detailed models that operate at larger length scales,and provide guidance on whether simulating a system with oxDNA is worthwhile.

  • Journal article
    Ferdous Z, Fuchs S, Behrends V, Trasanidis N, Vlachou D, Christophides GKet al., 2021,

    Anopheles coluzziistearoyl-CoA desaturase is essential for adult female survival and reproduction upon blood feeding

    , PLoS Pathogens, Vol: 17, ISSN: 1553-7366

    Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne

  • Journal article
    Gilbert C, Tang T-C, Ott W, Dorr B, Shaw W, Sun G, Lu T, Ellis Tet al., 2021,

    Living materials with programmable functionalities grown from engineered microbial co-cultures

    , Nature Materials, Vol: 20, Pages: 691-700, ISSN: 1476-1122

    Biological systems assemble living materials that are autonomously patterned, can self-repair and can sense and respond to their environment. The field of engineered living materials aims to create novel materials with properties similar to those of natural biomaterials using genetically-engineered organisms. Here we describe an approach to fabricate functional bacterial cellulose-based living materials using a stable co-culture of Saccharomyces cerevisiae yeast and bacterial cellulose-producing Komagataeibacter rhaeticus bacteria. Yeast strains can be engineered to secrete enzymes into bacterial cellulose, generating autonomously grown catalytic materials and enabling DNA-encoded modification of bacterial cellulose bulk properties. Alternatively, engineered yeast can be incorporated within the growing cellulose matrix, creating living materials that can sense and respond to chemical and optical stimuli. This symbiotic culture of bacteria and yeast is a flexible platform for the production of bacterial cellulosed-based engineered living materials with potential applications in biosensing and biocatalysis.

  • Journal article
    Miyano T, Tanaka R, 2021,

    Identification of keratinocyte subpopulations in transcriptome to evaluate drug effects in atopic dermatitis

    , British Journal of Dermatology, Vol: 184, Pages: 798-799, ISSN: 0007-0963
  • Journal article
    Plesa T, Stan G-B, Ouldridge TE, Bae Wet al., 2021,

    Quasi-robust control of biochemical reaction networks via stochastic morphing.

    , Journal of the Royal Society Interface, Vol: 18, Pages: 1-14, ISSN: 1742-5662

    One of the main objectives of synthetic biology is the development of molecular controllers that can manipulate the dynamics of a given biochemical network that is at most partially known. When integrated into smaller compartments, such as living or synthetic cells, controllers have to be calibrated to factor in the intrinsic noise. In this context, biochemical controllers put forward in the literature have focused on manipulating the mean (first moment) and reducing the variance (second moment) of the target molecular species. However, many critical biochemical processes are realized via higher-order moments, particularly the number and configuration of the probability distribution modes (maxima). To bridge the gap, we put forward the stochastic morpher controller that can, under suitable timescale separations, morph the probability distribution of the target molecular species into a predefined form. The morphing can be performed at a lower-resolution, allowing one to achieve desired multi-modality/multi-stability, and at a higher-resolution, allowing one to achieve arbitrary probability distributions. Properties of the controller, such as robustness and convergence, are rigorously established, and demonstrated on various examples. Also proposed is a blueprint for an experimental implementation of stochastic morpher.

  • Journal article
    Elani Y, 2021,

    Interfacing living and synthetic cells as an emerging frontier in synthetic biology

    , Angewandte Chemie International Edition, Vol: 60, Pages: 5602-5611, ISSN: 1433-7851

    The construction of artificial cells from inanimate molecular building blocks is one of the grand challenges of our time. In addition to being used as simplified cell models to decipher the rules of life, artificial cells have the potential to be designed as micromachines deployed in a host of clinical and industrial applications. The attractions of engineering artificial cells from scratch, as opposed to re‐engineering living biological cells, are varied. However, it is clear that artificial cells cannot currently match the power and behavioural sophistication of their biological counterparts. Given this, many in the synthetic biology community have started to ask: is it possible to interface biological and artificial cells together to create hybrid living/synthetic systems that leverage the advantages of both? This article will discuss the motivation behind this cellular bionics approach, in which the boundaries between living and non‐living matter are blurred by bridging top‐down and bottom‐up synthetic biology. It details the state of play of this nascent field and introduces three generalised hybridisation modes that have emerged.

  • Journal article
    Nousbeck J, McAleer MA, Hurault G, Kenny E, Harte K, Kezic S, Tanaka RJ, Irvine ADet al., 2021,

    miRNA analysis of childhood atopic dermatitis reveals a role for miR-451a

    , British Journal of Dermatology, Vol: 184, Pages: 514-523, ISSN: 0007-0963

    BACKGROUND: MicroRNAs (miRNAs), important regulators of gene expression, have been implicated in a variety of disorders. The expression pattern of miRNAs in pediatric atopic dermatitis (AD) has not been well studied. OBJECTIVE: We sought to investigate miRNA expression profiles in different blood compartments of infants with AD. METHODS: Small RNA and HTG-Edge sequencing were performed to identify differentially expressed miRNAs in PBMCs and plasma of AD infants versus age-matched healthy controls, with reverse transcription quantitative real-time PCR used for validation and measurement of miRNA targets. Logistic regression models with AUROC estimation was used to evaluate the diagnostic potential of chosen miRNAs for AD. RESULTS: RNA sequencing was performed to access miRNA expression profile in pediatric AD. We identified ten differentially expressed miRNAs in PBMCs and eight dysregulated miRNAs in plasma of AD infants compared to controls. Upregulated miRNAs in PBMCs included miRNAs known to be involved in inflammation: miR-223-3p, miR-126-5p and miR-143-3p. Differential expression of only one miRNA, miR-451a, was observed in both PBMCs and plasma of children with AD. Dysregulation of three miRNAs: miR-451a, miR-143-3p and miR-223-3p was validated in larger number of samples and miR-451a was identified as a predictive biomarker for the early diagnosis of the disease. Experimentally verified targets of miR-451a, IL6R and PSMB8, were increased in AD patients, negatively correlated with miR-451a levels and upregulated following inhibition of miR-451a in PBMCs. CONCLUSION: In infants with AD, a distinct peripheral blood miRNA signature is seen, highlighting the systemic effects of the disease. miR-451a is uniquely expressed in different blood compartments of AD patients and may serve as a promising novel biomarker for the early diagnosis of AD.

  • Journal article
    Aw R, De Wachter C, Laukens B, De Rycke R, De Bruyne M, Bell D, Callewaert N, Polizzi KMet al., 2021,

    Knockout of RSN1, TVP18 or CSC1‐2 causes perturbation of Golgi cisternae in Pichia pastoris

    , Traffic, Vol: 22, Pages: 48-63, ISSN: 1398-9219

    The structural organization of the Golgi stacks in mammalian cells is intrinsically linked to function, including glycosylation, but the role of morphology is less clear in lower eukaryotes. Here we investigated the link between the structural organization of the Golgi and secretory pathway function using Pichia pastoris as a model system. To unstack the Golgi cisternae, we disrupted 18 genes encoding proteins in the secretory pathway without loss of viability. Using biosensors, confocal microscopy and transmission electron microscopy we identified three strains with irreversible perturbations in the stacking of the Golgi cisternae, all of which had disruption in genes that encode proteins with annotated function as or homology to calcium/calcium permeable ion channels. Despite this, no variation in the secretory pathway for ER size, whole cell glycomics or recombinant protein glycans was observed. Our investigations showed the robust nature of the secretory pathway in P. pastoris and suggest that Ca2+ concentration, homeostasis or signalling may play a significant role for Golgi stacking in this organism and should be investigated in other organisms.

  • Journal article
    Zorzan I, López AR, Malyshava A, Ellis T, Barberis Met al., 2021,

    Synthetic designs regulating cellular transitions: Fine-tuning of switches and oscillators

    , Current Opinion in Systems Biology, Vol: 25, Pages: 11-26

    Biological circuits are responsible for transitions between cellular states in a timely fashion. For example, stem cells switch from an undifferentiated (unstable) state to a differentiated (stable) state. Conversely, cell cycle and circadian clocks are completed through transitions among successive (stable) states, i.e. waves, with (unstable) states switching them at definite timing. These transitions irreversibly determine the biological response or fate of a cell, to commit to reversible switches or to generate periodic oscillations of its state. Here, we review synthetic circuits that, in silico and in vivo, allow a cell to ‘make a decision’, i.e. to select which state to reach, among multiple ones available, through definite network designs. Specifically, we propose and discuss the designs, and their constituents motifs, which we consider to be more prone to reprogram cell behaviour, and whose parameters can be fine-tuned through systems biology and tested experimentally through Synthetic Biology. For these designs, exploration of the parameter space and of the influence of (external) cellular signals – which modulate circuit parameters – allows for the prediction of the circuit's response and its consequent impact on cell fate.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=991&limit=20&page=1&respub-action=search.html Current Millis: 1653282531160 Current Time: Mon May 23 06:08:51 BST 2022