The publication feed below is often incomplete and out of date; for an up to date summary of our publications please see Google Scholar or Pub Med

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Lanyon-Hogg T, Masumoto N, Bodakh G, Konitsiotis AD, Thinon E, Rodgers UR, Owens RJ, Magee AI, Tate EWet al., 2015,

    Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase

    , Analytical Biochemistry, Vol: 490, Pages: 66-72, ISSN: 1096-0309

    Hedgehog signaling is critical for correct embryogenesis and tissue development. However, on maturation, signaling is also found to be aberrantly activated in many cancers. Palmitoylation of the secreted signaling protein sonic hedgehog (Shh) by the enzyme hedgehog acyltransferase (Hhat) is required for functional signaling. To quantify this important posttranslational modification, many in vitro Shh palmitoylation assays employ radiolabeled fatty acids, which have limitations in terms of cost and safety. Here we present a click chemistry armed enzyme-linked immunosorbent assay (click–ELISA) for assessment of Hhat activity through acylation of biotinylated Shh peptide with an alkyne-tagged palmitoyl-CoA (coenzyme A) analogue. Click chemistry functionalization of the alkyne tag with azido-FLAG peptide allows analysis through an ELISA protocol and colorimetric readout. This assay format identified the detergent n-dodecyl β-d-maltopyranoside as an improved solubilizing agent for Hhat activity. Quantification of the potency of RU-SKI small molecule Hhat inhibitors by click–ELISA indicated IC50 values in the low- or sub-micromolar range. A stopped assay format was also employed that allows measurement of Hhat kinetic parameters where saturating substrate concentrations exceed the binding capacity of the streptavidin-coated plate. Therefore, click–ELISA represents a nonradioactive method for assessing protein palmitoylation in vitro that is readily expandable to other classes of protein lipidation.

  • Journal article
    So EC, Mattheis C, Tate EW, Frankel G, Schroeder GNet al., 2015,

    Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors

    , Canadian Journal of Microbiology, Vol: 61, Pages: 617-635, ISSN: 1480-3275

    The Gram-negative facultative intracellular pathogen Legionella pneumophila infects a wide range of different protozoa in the environment and also human alveolar macrophages upon inhalation of contaminated aerosols. Inside its hosts, it creates a defined and unique compartment, termed the Legionella-containing vacuole (LCV), for survival and replication. To establish the LCV, L. pneumophila uses its Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effector proteins into the host cell. Although it has become apparent in the past years that these effectors subvert a multitude of cellular processes and allow Legionella to take control of host cell vesicle trafficking, transcription, and translation, the exact function of the vast majority of effectors still remains unknown. This is partly due to high functional redundancy among the effectors, which renders conventional genetic approaches to elucidate their role ineffective. Here, we review the current knowledge about Legionella T4SS effectors, highlight open questions, and discuss new methods that promise to facilitate the characterization of T4SS effector functions in the future.

  • Journal article
    Rackham MD, Yu Z, Brannigan JA, Heal WP, Paape D, Barker KV, Wilkinson AJ, Smith DF, Leatherbarrow RJ, Tate EWet al., 2015,

    Discovery of high affinity inhibitors of Leishmania donovani N-myristoyltransferase

    , MedChemComm, Vol: 6, Pages: 1761-1766, ISSN: 2040-2511

    N-Myristoyltransferase (NMT) is a potential drug target in Leishmania parasites. Scaffold-hopping from published inhibitors yielded the serendipitous discovery of a chemotype selective for Leishmania donovani NMT; development led to high affinity inhibitors with excellent ligand efficiency. The binding mode was characterised by crystallography and provides a structural rationale for selectivity.

  • Journal article
    Serwa R, Krause E, Abaitua F, Tate EW, O'Hare PFet al., 2015,

    Systems analysis of protein fatty acylation in herpes simplex virus infected cells using chemical proteomics.

    , Chemistry & Biology, Vol: 22, Pages: 1008-1017, ISSN: 1074-5521

    Protein fatty acylation regulates diverse aspects of cellular function and organization and plays a key role in host immune responses to infection. Acylation also modulates the function and localization of virus-encoded proteins. Here, we employ chemical proteomics tools, bio-orthogonal probes, and capture reagents to study myristoylation and palmitoylation during infection with herpes simplex virus (HSV). Using in-gel fluorescence imaging and quantitative mass spectrometry, we demonstrate a generalized reduction in myristoylation of host proteins, whereas palmitoylation of host proteins, including regulators of interferon and tetraspanin family proteins, was selectively repressed. Furthermore, we found that a significant fraction of the viral proteome undergoes palmitoylation; we identified a number of virus membrane glycoproteins, structural proteins, and kinases. Taken together, our results provide broad oversight of protein acylation during HSV infection, a roadmap for similar analysis in other systems, and a resource with which to pursue specific analysis of systems and functions.

  • Journal article
    Nickel S, Serwa RA, Kaschani F, Ninck S, Zweerink S, Tate EW, Kaiser Met al., 2015,

    Chemoproteomic Evaluation of the Polyacetylene Callyspongynic Acid

    , Chemistry-A European Journal, Vol: 21, Pages: 10721-10728, ISSN: 1521-3765

    Polyacetylenes are a class of alkyne-containing natural products. Although potent bioactivities and thus possible applications as chemical probes have already been reported for some polyacetylenes, insights into the biological activities or molecular mode of action are still rather limited in most cases. To overcome this limitation, we describe the application of the polyacetylene callyspongynic acid in the development of an experimental roadmap for characterizing potential protein targets of alkyne-containing natural products. To this end, we undertook the first chemical synthesis of callyspongynic acid. We then used in situ chemical proteomics methods to demonstrate extensive callyspongynic acid-mediated chemical tagging of endoplasmic reticulum-associated lipid-metabolizing and modifying enzymes. We anticipate that an elucidation of protein targets of natural products may serve as an effective guide to the development of subsequent biological assays that aim to identify chemical phenotypes and bioactivities.

  • Journal article
    Broncel M, Serwa RA, Ciepla P, Krause E, Dallman MJ, Magee AI, Tate EW, Serwa RA, tate EW, magee A, dallman, ciepla P, broncel, Krause Eet al., 2015,

    Myristoylation profiling in human cells and zebrafish.

    , Data in Brief, Vol: 4, Pages: 379-383, ISSN: 2352-3409

    Human cells (HEK 293, HeLa, MCF-7) and zebrafish embryos were metabolically tagged with an alkynyl myristic acid probe, lysed with an SDS buffer and tagged proteomes ligated to multifunctional capture reagents via copper-catalyzed alkyne azide cycloaddition (CuAAC). This allowed for affinity enrichment and high-confidence identification, by delivering direct MS/MS evidence for the modification site, of 87 and 61 co-translationally myristoylated proteins in human cells and zebrafish, respectively. The data have been deposited to ProteomeXchange Consortium (Vizcaíno et al., 2014 Nat. Biotechnol., 32, 223-6) (PXD001863 and PXD001876) and are described in detail in Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic protein lipidation during vertebrate development׳ by Broncel et al., Angew. Chem. Int. Ed.

  • Journal article
    Broncel M, Serwa RA, Ciepla P, Krause E, Dallman MJ, Magee AI, Tate EWet al., 2015,

    Multifunctional Reagents for Quantitative Proteome-Wide Analysis of Protein Modification in Human Cells and Dynamic Profiling of Protein Lipidation During Vertebrate Development

    , Angewandte Chemie-International Edition, Vol: 54, Pages: 5948-5951, ISSN: 1521-3773

    Novel multifunctional reagents were applied incombination with a lipid probe for affinity enrichment ofmyristoylated proteins and direct detection of lipid-modifiedtryptic peptides by mass spectrometry. This method enableshigh-confidence identification of the myristoylated proteomeon an unprecedented scale in cell culture, and allowed the firstquantitative analysis of dynamic changes in protein lipidationduring vertebrate embryonic development.

  • Journal article
    Yusuf NA, Green JL, Wall RJ, Knuepfer E, Moon RW, Schulte-Huxel C, Stanway RR, Martin SR, Howell SA, Douse CH, Cota E, Tate EW, Tewari R, Holder AAet al., 2015,

    The Plasmodium Class XIV Myosin, MyoB, Has a Distinct Subcellular Location in Invasive and Motile Stages of the Malaria Parasite and an Unusual Light Chain

    , Journal of Biological Chemistry, Vol: 290, Pages: 12147-12164, ISSN: 1083-351X

    Myosin B (MyoB) is one of the two short class XIV myosinsencoded in the Plasmodium genome. Class XIV myosins arecharacterized by a catalytic “head,” a modified “neck,” and theabsence of a “tail” region. Myosin A (MyoA), the other class XIVmyosin in Plasmodium, has been established as a component ofthe glideosome complex important in motility and cell invasion,but MyoB is not well characterized. We analyzed the propertiesof MyoB using three parasite species as follows: Plasmodiumfalciparum, Plasmodium berghei, and Plasmodium knowlesi.MyoB is expressed in all invasive stages (merozoites, ookinetes,and sporozoites) of the life cycle, and the protein is found in adiscrete apical location in these polarized cells. In P. falciparum,MyoB is synthesized very late in schizogony/merogony, and itslocation in merozoites is distinct from, and anterior to, that of arange of known proteins present in the rhoptries, rhoptry neckor micronemes. Unlike MyoA, MyoB is not associated withglideosome complex proteins, including the MyoA light chain,myosin A tail domain-interacting protein (MTIP). A uniqueMyoB light chain (MLC-B) was identified that contains a calmodulin-likedomain at the C terminus and an extended N-terminalregion. MLC-B localizes to the same extreme apical polein the cell as MyoB, and the two proteins form a complex. Wepropose that MLC-B is a MyoB-specific light chain, and for theshort class XIV myosins that lack a tail region, the atypical myosinlight chains may fulfill that role.

  • Journal article
    Masumoto N, Lanyon-Hogg T, Rodgers UR, Konitsiotis AD, Magee AI, Tate EWet al., 2015,

    Membrane bound O-acyltransferases and their inhibitors

    , Biochemical Society Transactions, Vol: 43, Pages: 246-252, ISSN: 1470-8752

    Since the identification of the membrane-bound O-acyltransferase (MBOATs) protein family in the early2000s, three distinct members [porcupine (PORCN), hedgehog (Hh) acyltransferase (HHAT) and ghrelin Oacyltransferase(GOAT)] have been shown to acylate specific proteins or peptides. In this review, topologydetermination, development of assays to measure enzymatic activities and discovery of small moleculeinhibitors are compared and discussed for each of these enzymes.

  • Journal article
    Ciepla P, Magee AI, Tate EW, 2015,

    Cholesterylation: a tail of hedgehog

    , BIOCHEMICAL SOCIETY TRANSACTIONS, Vol: 43, Pages: 262-267, ISSN: 0300-5127

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=870&limit=10&page=11&respub-action=search.html Current Millis: 1701515970664 Current Time: Sat Dec 02 11:19:30 GMT 2023