The publication feed below is often incomplete and out of date; for an up to date summary of our publications please see Google Scholar or Pub Med
Results
- Showing results for:
- Reset all filters
Search results
-
Journal articleWang Z, Grosskurth SE, Cheung T, et al., 2018,
Pharmacological inhibition of PARP6 triggers multipolar spindle formation and demonstrates therapeutic effects in breast cancer
, Cancer Research, Vol: 78, Pages: 6691-6702, ISSN: 1538-7445PARP proteins represent a class of post-translational modification enzymes with diverse cellular functions. Targeting PARPs has proven to be efficacious clinically, but exploration of the therapeutic potential of PARP inhibition has been limited to targeting poly(ADP-ribose) generating PARP, including PARP1/2/3 and tankyrases. The cancer-related functions of mono(ADP-ribose) generating PARP, including PARP6, remain largely uncharacterized. Here, we report a novel therapeutic strategy targeting PARP6 using the first reported PARP6 inhibitors. By screening a collection of PARP compounds for their ability to induce mitotic defects, we uncovered a robust correlation between PARP6 inhibition and induction of multipolar spindle (MPS) formation, which was phenocopied by PARP6 knockdown. Treatment with AZ0108, a PARP6 inhibitor with a favorable pharmacokinetic profile, potently induced the MPS phenotype, leading to apoptosis in a subset of breast cancer cells in vitro and antitumor effects in vivo. In addition, Chk1 was identified as a specific substrate of PARP6 and was further confirmed by enzymatic assays and by mass spectrometry. Furthermore, when modification of Chk1 was inhibited with AZ0108 in breast cancer cells, we observed marked upregulation of p-S345 Chk1 accompanied by defects in mitotic signaling. Together, these results establish proof-of-concept antitumor efficacy through PARP6 inhibition and highlight a novel function of PARP6 in maintaining centrosome integrity via direct ADP-ribosylation of Chk1 and modulation of its activity.
-
Journal articleDe Vita E, Schuler P, Lovell S, et al., 2018,
Depsipeptides Featuring a Neutral P1 Are Potent Inhibitors of Kallikrein-Related Peptidase 6 with On-Target Cellular Activity
, JOURNAL OF MEDICINAL CHEMISTRY, Vol: 61, Pages: 8859-8874, ISSN: 0022-2623 -
Journal articleBenns HJ, Tate EW, Child MA, 2018,
Activity-Based Protein Profiling for the Study of Parasite Biology.
, Curr Top Microbiol Immunol, Vol: 420, Pages: 155-174, ISSN: 0070-217XParasites exist within most ecological niches, often transitioning through biologically and chemically complex host environments over the course of their parasitic life cycles. While the development of technologies for genetic engineering has revolutionised the field of functional genomics, parasites have historically been less amenable to such modification. In light of this, parasitologists have often been at the forefront of adopting new small-molecule technologies, repurposing drugs into biological tools and probes. Over the last decade, activity-based protein profiling (ABPP) has evolved into a powerful and versatile chemical proteomic platform for characterising the function of enzymes. Central to ABPP is the use of activity-based probes (ABPs), which covalently modify the active sites of enzyme classes ranging from serine hydrolases to glycosidases. The application of ABPP to cellular systems has contributed vastly to our knowledge on the fundamental biology of a diverse range of organisms and has facilitated the identification of potential drug targets in many pathogens. In this chapter, we provide a comprehensive review on the different forms of ABPP that have been successfully applied to parasite systems, and highlight key biological insights that have been enabled through their application.
-
Journal articleBeard R, Singh N, Grundschober C, et al., 2018,
High-yielding 18F radiosynthesis of a novel oxytocin receptor tracer, a probe for nose-to-brain oxytocin uptake in vivo
, Chemical Communications, Vol: 54, Pages: 8120-8123, ISSN: 1359-7345A novel Al18F labelled peptide tracer for PET imaging of oxytocin receptor has been accessed through a high radiochemical yield approach. This tracer showed comparable affinity and higher selectivity and stability compared to oxytocin, and was used to demonstrate direct nose-to-brain uptake following intranasal administration, a common yet controversial delivery route for oxytocin-based therapeutics.
-
Journal articleBeard R, Stucki A, Schmitt M, et al., 2018,
Building bridges for highly selective, potent and stable oxytocin and vasopressin analogs
, Bioorganic and Medicinal Chemistry, Vol: 26, Pages: 3039-3045, ISSN: 0968-0896Oxytocin (OT) is an exciting potential therapeutic agent, but it is highly sensitive to modification and suffers extensive degradation at elevated temperature and in vivo. Here we report studies towards OT analogs with favorable selectivity, affinity and potency towards the oxytocin receptor (OTR), in addition to improving stability of the peptide by bridging the disulfide region with substituted dibromo-xylene analogs. We found a sensitive structure-activity relationship in which meta-cyclized analogs (dOTmeta) gave highest affinity (50 nM Ki), selectivity (34-fold), and agonist potency (34 nM EC50, 87-fold selectivity) towards OTR. Surprisingly, ortho-cyclized analogs demonstrated OTR and vasopressin V1a receptor subtype affinity (220 nM and 69 nM, respectively) and pharmacological activity (294 nM and 35 nM, respectively). V1a binding and selectivity for ortho-cyclized peptides could be improved 6-fold by substituting a neutral residue at position 8 with a basic amino acid, providing potent antagonists (14 nM IC50) that displayed no activation of the OTR. Furthermore, xylene-bridged analogs demonstrated increased stability compared to OT at elevated temperature, demonstrating promising therapeutic potential for these analogs which warrants further study.
-
Conference paperRiviere F, Dian C, Perez-Dorado I, et al., 2018,
Mechanistic insight into HsNMT1-mediated acylation
, Publisher: WILEY, Pages: 421-422, ISSN: 2211-5463 -
Conference paperTate EW, 2018,
Protein N terminal modifications: from chemical biology to drug discovery
, Publisher: WILEY, Pages: 72-73, ISSN: 2211-5463 -
Journal articleMousnier A, Bell AS, Swieboda DP, et al., 2018,
Fragment-derived inhibitors of human N-myristoyltransferase block capsid assembly and replication of the common cold virus
, Nature Chemistry, Vol: 10, Pages: 599-606, ISSN: 1755-4330Rhinoviruses are the pathogens most often responsible for the common cold, and are a frequent cause of exacerbations in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Here we report discovery of IMP-1088, a picomolar dual inhibitor of the human N-myristoyltransferases NMT1 and NMT2, and use it to demonstrate that pharmacological inhibition of host cell N-myristoylation rapidly and completely prevents rhinoviral replication without inducing cytotoxicity. Identification of cooperative binding between weak-binding fragments led to rapid inhibitor optimization through fragment reconstruction, structure-guided fragment linking, and conformational control over linker geometry. We show that inhibition of co-translational myristoylation of a specific virus-encoded protein (VP0) by IMP-1088 potently blocks a key step in viral capsid assembly, delivering low nanomolar antiviral activity against multiple rhinovirus strains, poliovirus and foot-and-mouth disease virus, and protection of cells against virus-induced killing, highlighting the potential of host myristoylation as a drug target in picornaviral infections.
-
Journal articleCraven GB, Affron DP, Allen CE, et al., 2018,
High-throughput kinetic analysis for target-directed covalent ligand discovery
, Angewandte Chemie, Vol: 130, Pages: 5355-5359, ISSN: 0044-8249Cysteine‐reactive small molecules are used as chemical probes of biological systems and as medicines. Identifying high‐quality covalent ligands requires comprehensive kinetic analysis to distinguish selective binders from pan‐reactive compounds. Quantitative irreversible tethering (qIT), a general method for screening cysteine‐reactive small molecules based upon the maximization of kinetic selectivity, is described. This method was applied prospectively to discover covalent fragments that target the clinically important cell cycle regulator Cdk2. Crystal structures of the inhibitor complexes validate the approach and guide further optimization. The power of this technique is highlighted by the identification of a Cdk2‐selective allosteric (type IV) kinase inhibitor whose novel mode‐of‐action could be exploited therapeutically.
-
Journal articleCraven G, Affron D, Allen C, et al., 2018,
High-throughput kinetic analysis for target-directed covalent ligand discovery
, Angewandte Chemie International Edition, Vol: 57, Pages: 5257-5261, ISSN: 1433-7851Cysteine-reactive small molecules are used as chemical probes of biological systems and as medicines. Identifying high-quality covalent ligands requires comprehensive kinetic analysis to distinguish selective binders from pan-reactive compounds. Here we describe quantitative irreversible tethering(qIT), a general method for screening cysteine-reactive small moleculesbased upon the maximization of kinetic selectivity. We apply this method prospectively to discover covalent fragments that target the clinically important cell cycle regulator Cdk2. Crystal structures of the inhibitor complexes validate the approach and guide further optimization. The power of this technique is highlighted by the identification of a Cdk2-selective allosteric (type IV) kinase inhibitor whose novel mode-of-action could be exploited therapeutically.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.
Contact
Prof. Ed Tate
GSK Chair in Chemical Biology
Department of Chemistry
Molecular Sciences Research Hub, White City Campus,
82 Wood Lane, London, W12 0BZ
e.tate@imperial.ac.uk
Tel: +44 (0)20 759 + ext 43752 or 45821