BibTex format
@article{Chester:2020:10.1007/jhep07(2020)041,
author = {Chester, SM and Kalloor, RR and Sharon, A},
doi = {10.1007/jhep07(2020)041},
journal = {Journal of High Energy Physics},
title = {3d $$ \mathcal(N) $$ = 4 OPE coefficients from Fermi gas},
url = {http://dx.doi.org/10.1007/jhep07(2020)041},
volume = {2020},
year = {2020}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - <jats:title>A<jats:sc>bstract</jats:sc> </jats:title><jats:p>The partition function of a 3d <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \mathcal{N} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> = 4 gauge theory with rank <jats:italic>N</jats:italic> can be computed using supersymmetric localization in terms of a matrix model, which often can be formulated as an ideal Fermi gas with a non-trivial one-particle Hamiltonian. We show how OPE coefficients of protected operators correspond in this formalism to averages of <jats:italic>n</jats:italic>-body operators in the Fermi gas, which can be computed to all orders in 1<jats:italic>/N</jats:italic> using the WKB expansion. We use this formalism to compute OPE coefficients in the U(<jats:italic>N</jats:italic>)<jats:sub><jats:italic>k</jats:italic></jats:sub><jats:italic>×</jats:italic> U(<jats:italic>N</jats:italic>)<jats:sub><jats:italic>−k</jats:italic></jats:sub> ABJM theory as well as the U(<jats:italic>N</jats:italic> ) theory with one adjoint and <jats:italic>N</jats:italic><jats:sub><jats:italic>f</jats:italic></jats:sub> fundamental hypermultiplets, both of which have weakly coupled M-theory duals in the large <jats:italic>N</jats:italic> and finite <jats:italic>k</jats:italic> or <jats:italic>N</jats:italic><jats:sub><jats:italic>f</jats:italic></jats:sub> regimes. For ABJM we reproduce known results, while for the <jats:italic>N</jats:italic><jats:sub><jats:italic>f</jats:italic>&l
AU - Chester,SM
AU - Kalloor,RR
AU - Sharon,A
DO - 10.1007/jhep07(2020)041
PY - 2020///
TI - 3d $$ \mathcal{N} $$ = 4 OPE coefficients from Fermi gas
T2 - Journal of High Energy Physics
UR - http://dx.doi.org/10.1007/jhep07(2020)041
UR - https://doi.org/10.1007/jhep07(2020)041
VL - 2020
ER -