Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Conference paper
    Lim BWT, Reichenbach A, Cully A, 2022,

    Learning to walk autonomously via reset-free quality-diversity

    , The Genetic and Evolutionary Computation Conference (GECCO)

    Quality-Diversity (QD) algorithms can discover large and complex behavioural repertoires consisting of both diverse and high-performing skills. However, the generation of behavioural repertoires has mainly been limited to simulation environments instead of real-world learning. This is because existing QD algorithms need large numbers of evaluations as well as episodic resets, which require manual human supervision and interventions. This paper proposes Reset-Free Quality-Diversity optimization (RF-QD) as a step towards autonomous learning for robotics in open-ended environments. We build on Dynamics-Aware Quality-Diversity (DA-QD) and introduce a behaviour selection policy that leverages the diversity of the imagined repertoire and environmental information to intelligently select of behaviours that can act as automatic resets. We demonstrate this through a task of learning to walk within defined training zones with obstacles. Our experiments show that we can learn full repertoires of legged locomotion controllers autonomously without manual resets with high sample efficiency in spite of harsh safety constraints. Finally, using an ablation of different target objectives, we show that it is important for RF-QD to have diverse types solutions available for the behaviour selection policy over solutions optimised with a specific objective. Videos and code available at this https URL.

  • Conference paper
    Ward F, Belardinelli F, Toni F, 2022,

    Argumentative Reward Learning: Reasoning About Human Preferences

    , HMCaT 2022 (ICML)
  • Conference paper
    Ward F, Belardinelli F, Toni F, 2022,

    Argumentative Reward Learning: Reasoning About Human Preferences

    , MPREF 2022 (IJCAI-ECAI 2022)
  • Conference paper
    Ward F, Toni F, Belardinelli F, 2022,

    A Casual Perspective on AI Deception

    , CAUSAL 22 (ICLP)
  • Conference paper
    Ward F, Toni F, Belardinelli F, 2022,

    A Causal Perspective on AI Deception in Games

    , AI Safety 2022 (IJCAI-ECAI-22)
  • Conference paper
    Gaskell A, Miao Y, Toni F, Specia Let al., 2022,

    Logically consistent adversarial attacks for soft theorem provers

    , 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence, Publisher: International Joint Conferences on Artificial Intelligence

    Recent efforts within the AI community haveyielded impressive results towards “soft theoremproving” over natural language sentences using lan-guage models. We propose a novel, generativeadversarial framework for probing and improvingthese models’ reasoning capabilities. Adversarialattacks in this domain suffer from the logical in-consistency problem, whereby perturbations to theinput may alter the label. Our Logically consis-tent AdVersarial Attacker, LAVA, addresses this bycombining a structured generative process with asymbolic solver, guaranteeing logical consistency.Our framework successfully generates adversarialattacks and identifies global weaknesses commonacross multiple target models. Our analyses revealnaive heuristics and vulnerabilities in these mod-els’ reasoning capabilities, exposing an incompletegrasp of logical deduction under logic programs.Finally, in addition to effective probing of thesemodels, we show that training on the generatedsamples improves the target model’s performance.

  • Conference paper
    Irwin B, Rago A, Toni F, 2022,

    Forecasting argumentation frameworks

    , 19th International Conference on Principles of Knowledge Representation and Reasoning (KR 2022), Publisher: IJCAI Organisation, ISSN: 2334-1033

    We introduce Forecasting Argumentation Frameworks(FAFs), a novel argumentation-based methodology forforecasting informed by recent judgmental forecastingresearch. FAFs comprise update frameworks which empower(human or artificial) agents to argue over time about theprobability of outcomes, e.g. the winner of a politicalelection or a fluctuation in inflation rates, whilst flaggingperceived irrationality in the agents’ behaviour with a viewto improving their forecasting accuracy. FAFs include fiveargument types, amounting to standard pro/con arguments,as in bipolar argumentation, as well as novel proposalarguments and increase/decrease amendment arguments. Weadapt an existing gradual semantics for bipolar argumen-tation to determine the aggregated dialectical strength ofproposal arguments and define irrational behaviour. We thengive a simple aggregation function which produces a finalgroup forecast from rational agents’ individual forecasts.We identify and study properties of FAFs and conductan empirical evaluation which signals FAFs’ potential toincrease the forecasting accuracy of participants.

  • Conference paper
    Rago A, Baroni P, Toni F, 2022,

    Explaining causal models with argumentation: the case of bi-variate reinforcement

    , 19th International Conference on Principles of Knowledge Representation and Reasoning (KR 2022), Publisher: IJCAI Organisation, ISSN: 2334-1033

    Causal models are playing an increasingly important role inmachine learning, particularly in the realm of explainable AI.We introduce a conceptualisation for generating argumenta-tion frameworks (AFs) from causal models for the purposeof forging explanations for the models’ outputs. The concep-tualisation is based on reinterpreting desirable properties ofsemantics of AFs as explanation moulds, which are meansfor characterising the relations in the causal model argumen-tatively. We demonstrate our methodology by reinterpretingthe property of bi-variate reinforcement as an explanationmould to forge bipolar AFs as explanations for the outputs ofcausal models. We perform a theoretical evaluation of theseargumentative explanations, examining whether they satisfy arange of desirable explanatory and argumentative propertie

  • Journal article
    Thanaj M, Mielke J, McGurk K, Bai W, Savioli N, Simoes Monteiro de Marvao A, Meyer H, Zeng L, Sohler F, Lumbers T, Wilkins M, Ware J, Bender C, Rueckert D, MacNamara A, Freitag D, O'Regan Det al., 2022,

    Genetic and environmental determinants of diastolic heart function

    , Nature Cardiovascular Research, Vol: 1, Pages: 361-371, ISSN: 2731-0590

    Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends onmyocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processesand is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiacmotion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wideassociation study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomericfunction under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes wereindependent predictors of diastolic function and we found a causal relationship between genetically-determined ventricularstiffness and incident heart failure. Our results provide insights into the genetic and environmental factors influencing diastolicfunction that are relevant for identifying causal relationships and potential tractable targets.

  • Conference paper
    Grillotti L, Cully A, 2022,

    Relevance-guided unsupervised discovery of abilities with quality-diversity algorithms

    , Genetic and Evolutionary Computation Conference (GECCO), Publisher: ACM

    Quality-Diversity algorithms provide efficient mechanisms to generate large collections of diverse and high-performing solutions, which have shown to be instrumental for solving downstream tasks. However, most of those algorithms rely on a behavioural descriptor to characterise the diversity that is hand-coded, hence requiring prior knowledge about the considered tasks. In this work, we introduce Relevance-guided Unsupervised Discovery of Abilities; a Quality-Diversity algorithm that autonomously finds a behavioural characterisation tailored to the task at hand. In particular, our method introduces a custom diversity metric that leads to higher densities of solutions near the areas of interest in the learnt behavioural descriptor space. We evaluate our approach on a simulated robotic environment, where the robot has to autonomously discover its abilities based on its full sensory data. We evaluated the algorithms on three tasks: navigation to random targets, moving forward with a high velocity, and performing half-rolls. The experimental results show that our method manages to discover collections of solutions that are not only diverse, but also well-adapted to the considered downstream task.

  • Conference paper
    Allard M, Smith Bize S, Chatzilygeroudis K, Cully Aet al., 2022,

    Hierarchical Quality-Diversity For Online Damage Recovery

    , The Genetic and Evolutionary Computation Conference, Publisher: ACM

    Adaptation capabilities, like damage recovery, are crucial for the deployment of robots in complex environments. Several works have demonstrated that using repertoires of pre-trained skills can enable robots to adapt to unforeseen mechanical damages in a few minutes. These adaptation capabilities are directly linked to the behavioural diversity in the repertoire. The more alternatives the robot has to execute a skill, the better are the chances that it can adapt to a new situation. However, solving complex tasks, like maze navigation, usually requires multiple different skills. Finding a large behavioural diversity for these multiple skills often leads to an intractable exponential growth of the number of required solutions.In this paper, we introduce the Hierarchical Trial and Error algorithm, which uses a hierarchical behavioural repertoire to learn diverse skills and leverages them to make the robot more adaptive to different situations. We show that the hierarchical decomposition of skills enables the robot to learn more complex behaviours while keeping the learning of the repertoire tractable. The experiments with a hexapod robot show that our method solves maze navigation tasks with 20% less actions in the most challenging scenarios than the best baseline while having 57% less complete failures.

  • Journal article
    Grillotti L, Cully A, 2022,

    Unsupervised Behaviour Discovery with Quality-Diversity Optimisation

    , IEEE Transactions on Evolutionary Computation, ISSN: 1089-778X

    Quality-Diversity algorithms refer to a class of evolutionary algorithms designed to find a collection of diverse and high-performing solutions to a given problem. In robotics, such algorithms can be used for generating a collection of controllers covering most of the possible behaviours of a robot. To do so, these algorithms associate a behavioural descriptor to each of these behaviours. Each behavioural descriptor is used for estimating the novelty of one behaviour compared to the others. In most existing algorithms, the behavioural descriptor needs to be hand-coded, thus requiring prior knowledge about the task to solve. In this paper, we introduce: Autonomous Robots Realising their Abilities, an algorithm that uses a dimensionality reduction technique to automatically learn behavioural descriptors based on raw sensory data. The performance of this algorithm is assessed on three robotic tasks in simulation. The experimental results show that it performs similarly to traditional hand-coded approaches without the requirement to provide any hand-coded behavioural descriptor. In the collection of diverse and high-performing solutions, it also manages to find behaviours that are novel with respect to more features than its hand-coded baselines. Finally, we introduce a variant of the algorithm which is robust to the dimensionality of the behavioural descriptor space.

  • Journal article
    AlAttar A, Chappell D, Kormushev P, 2022,

    Kinematic-model-free predictive control for robotic manipulator target reaching with obstacle avoidance

    , Frontiers in Robotics and AI, Vol: 9, Pages: 1-9, ISSN: 2296-9144

    Model predictive control is a widely used optimal control method for robot path planning andobstacle avoidance. This control method, however, requires a system model to optimize controlover a finite time horizon and possible trajectories. Certain types of robots, such as softrobots, continuum robots, and transforming robots, can be challenging to model, especiallyin unstructured or unknown environments. Kinematic-model-free control can overcome thesechallenges by learning local linear models online. This paper presents a novel perception-basedrobot motion controller, the kinematic-model-free predictive controller, that is capable of controllingrobot manipulators without any prior knowledge of the robot’s kinematic structure and dynamicparameters and is able to perform end-effector obstacle avoidance. Simulations and physicalexperiments were conducted to demonstrate the ability and adaptability of the controller toperform simultaneous target reaching and obstacle avoidance.

  • Journal article
    Cursi F, Bai W, Yeatman EM, Kormushev Pet al., 2022,

    GlobDesOpt: a global optimization framework for optimal robot manipulator design

    , IEEE Access, Vol: 10, Pages: 5012-5023, ISSN: 2169-3536

    Robot design is a major component in robotics, as it allows building robots capable of performing properly in given tasks. However, designing a robot with multiple types of parameters and constraints and defining an optimization function analytically for the robot design problem may be intractable or even impossible. Therefore black-box optimization approaches are generally preferred. In this work we propose GlobDesOpt, a simple-to-use open-source optimization framework for robot design based on global optimization methods. The framework allows selecting various design parameters and optimizing for both single and dual-arm robots. The functionalities of the framework are shown here to optimally design a dual-arm surgical robot, comparing the different two optimization strategies.

  • Journal article
    Wang K, Fei H, Kormushev P, 2022,

    Fast online optimization for terrain-blind bipedal robot walking with a decoupled actuated SLIP model

    , Frontiers in Robotics and AI, Vol: 9, Pages: 1-11, ISSN: 2296-9144

    We present an online optimization algorithm which enables bipedal robots to blindly walk overvarious kinds of uneven terrains while resisting pushes. The proposed optimization algorithmperforms high level motion planning of footstep locations and center-of-mass height variationsusing the decoupled actuated Spring Loaded Inverted Pendulum (aSLIP) model. The decoupledaSLIP model simplifies the original aSLIP with Linear Inverted Pendulum (LIP) dynamics inhorizontal states and spring dynamics in the vertical state. The motion planning can beformulated as a discrete-time Model Predictive Control (MPC) problem and solved at a frequencyof 1 kHz. The output of the motion planner is fed into an inverse-dynamics based whole bodycontroller for execution on the robot. A key result of this controller is that the feet of the robot arecompliant, which further extends the robot’s ability to be robust to unobserved terrain variations.We evaluate our method in simulation with the bipedal robot SLIDER. Results show the robotcan blindly walk over various uneven terrains including slopes, wave fields and stairs. It can alsoresist pushes of up to 40 N for a duration of 0.1 s while walking on uneven terrain.

  • Conference paper
    Cursi F, Chappell D, Kormushev P, 2022,

    Augmenting loss functions of feedforward neural networks with differential relationships for robot kinematic modelling

    , Ljubljana, Slovenia, 20th International Conference on Advanced Robotics (ICAR), Publisher: IEEE, Pages: 201-207

    Model learning is a crucial aspect of robotics as it enables the use of traditional and consolidated model-based controllers to perform desired motion tasks. However, due to the increasing complexity of robotic structures, modelling robots is becoming more and more challenging, and analytical models are very difficult to build, particularly for redundant robots. Machine learning approaches have shown great capabilities in learning complex mapping and have widely been used in robot model learning and control. Generally, inverse kinematics is learned, directly obtaining the desired control commands given a desired task. However, learning forward kinematics is simpler and allows the computation of the robot Jacobian and enables the exploitation of the optimality of controllers. Nevertheless, typical learning methods have no knowledge about the differential relationship between the position and velocity mappings. In this work, we present two novel loss functions to train feedforward Artificial Neural network (ANN) which incorporate this information in learning the forward kinematic model of robotic structures, and carry out a comparison with standard ANN training using position data only. Simulation results show that incorporating the knowledge of the velocity mapping improves the suitability of the learnt model for control tasks.

  • Conference paper
    Lim BWT, Grillotti L, Bernasconi L, Cully Aet al., 2022,

    Dynamics-aware quality-diversity for efficient learning of skill repertoires

    , IEEE International Conference on Robotics and Automation, Publisher: IEEE

    Quality-Diversity (QD) algorithms are powerful exploration algorithms that allow robots to discover large repertoires of diverse and high-performing skills. However, QD algorithms are sample inefficient and require millionsof evaluations. In this paper, we propose Dynamics-Aware Quality-Diversity (DA-QD), a framework to improve the sample efficiency of QD algorithms through the use of dynamics models. We also show how DA-QD can then be used for continual acquisition of new skill repertoires. To do so, weincrementally train a deep dynamics model from experience obtained when performing skill discovery using QD. We can then perform QD exploration in imagination with an imagined skill repertoire. We evaluate our approach on three robotic experiments. First, our experiments show DA-QD is 20 timesmore sample efficient than existing QD approaches for skill discovery. Second, we demonstrate learning an entirely new skill repertoire in imagination to perform zero-shot learning. Finally, we show how DA-QD is useful and effective for solving a long horizon navigation task and for damage adaptation in the real world. Videos and source code are available at:

  • Conference paper
    Irwin B, Rago A, Toni F, 2021,

    Argumentative forecasting

    , AAMAS 2022, Publisher: ACM

    We introduce the Forecasting Argumentation Framework (FAF), anovel argumentation framework for forecasting informed by re-cent judgmental forecasting research. FAFs comprise update frame-works which empower (human or artificial) agents to argue overtime with and about probability of scenarios, whilst flagging per-ceived irrationality in their behaviour with a view to improvingtheir forecasting accuracy. FAFs include three argument types withfuture forecasts and aggregate the strength of these arguments toinform estimates of the likelihood of scenarios. We describe animplementation of FAFs for supporting forecasting agents.

  • Conference paper
    Zhang K, Toni F, Williams M, 2021,

    A federated cox model with non-proportional hazards

    , The 6th International Workshop on ​Health Intelligence, Publisher: Springer, ISSN: 1860-949X

    Recent research has shown the potential for neural networksto improve upon classical survival models such as the Cox model, whichis widely used in clinical practice. Neural networks, however, typicallyrely on data that are centrally available, whereas healthcare data arefrequently held in secure silos. We present a federated Cox model thataccommodates this data setting and also relaxes the proportional hazardsassumption, allowing time-varying covariate effects. In this latter respect,our model does not require explicit specification of the time-varying ef-fects, reducing upfront organisational costs compared to previous works.We experiment with publicly available clinical datasets and demonstratethat the federated model is able to perform as well as a standard model.

  • Journal article
    Liu Z, Peach R, Lawrance E, Noble A, Ungless M, Barahona Met al., 2021,

    Listening to mental health crisis needs at scale: using Natural Language Processing to understand and evaluate a mental health crisis text messaging service

    , Frontiers in Digital Health, Vol: 3, Pages: 1-14, ISSN: 2673-253X

    The current mental health crisis is a growing public health issue requiring a large-scale response that cannot be met with traditional services alone. Digital support tools are proliferating, yet most are not systematically evaluated, and we know little about their users and their needs. Shout is a free mental health text messaging service run by the charity Mental Health Innovations, which provides support for individuals in the UK experiencing mental or emotional distress and seeking help. Here we study a large data set of anonymised text message conversations and post-conversation surveys compiled through Shout. This data provides an opportunity to hear at scale from those experiencing distress; to better understand mental health needs for people not using traditional mental health services; and to evaluate the impact of a novel form of crisis support. We use natural language processing (NLP) to assess the adherence of volunteers to conversation techniques and formats, and to gain insight into demographic user groups and their behavioural expressions of distress. Our textual analyses achieve accurate classification of conversation stages (weighted accuracy = 88%), behaviours (1-hamming loss = 95%) and texter demographics (weighted accuracy = 96%), exemplifying how the application of NLP to frontline mental health data sets can aid with post-hoc analysis and evaluation of quality of service provision in digital mental health services.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=989&limit=20&respub-action=search.html Current Millis: 1656798511641 Current Time: Sat Jul 02 22:48:31 BST 2022