BibTex format

author = {Chee, Wezen X and Chandran, A and Eapen, RS and Waters, E and Bricio-Moreno, L and Tosi, T and Dolan, S and Millership, C and Kadioglu, A and Gründling, A and Itzhaki, LS and Welch, M and Rahman, T},
doi = {10.1021/acs.jcim.2c00300},
journal = {Journal of Chemical Information and Modeling},
pages = {2586--2599},
title = {Structure-based discovery of lipoteichoic acid synthase inhibitors.},
url = {},
volume = {62},
year = {2022}

RIS format (EndNote, RefMan)

AB - Lipoteichoic acid synthase (LtaS) is a key enzyme for the cell wall biosynthesis of Gram-positive bacteria. Gram-positive bacteria that lack lipoteichoic acid (LTA) exhibit impaired cell division and growth defects. Thus, LtaS appears to be an attractive antimicrobial target. The pharmacology around LtaS remains largely unexplored with only two small-molecule LtaS inhibitors reported, namely "compound 1771" and the Congo red dye. Structure-based drug discovery efforts against LtaS remain unattempted due to the lack of an inhibitor-bound structure of LtaS. To address this, we combined the use of a molecular docking technique with molecular dynamics (MD) simulations to model a plausible binding mode of compound 1771 to the extracellular catalytic domain of LtaS (eLtaS). The model was validated using alanine mutagenesis studies combined with isothermal titration calorimetry. Additionally, lead optimization driven by our computational model resulted in an improved version of compound 1771, namely, compound 4 which showed greater affinity for binding to eLtaS than compound 1771 in biophysical assays. Compound 4 reduced LTA production in S. aureus dose-dependently, induced aberrant morphology as seen for LTA-deficient bacteria, and significantly reduced bacteria titers in the lung of mice infected with S. aureus. Analysis of our MD simulation trajectories revealed the possible formation of a transient cryptic pocket in eLtaS. Virtual screening (VS) against the cryptic pocket led to the identification of a new class of inhibitors that could potentiate β-lactams against methicillin-resistant S. aureus. Our overall workflow and data should encourage further drug design campaign against LtaS. Finally, our work reinforces the importance of considering protein conformational flexibility to a successful VS endeavor.
AU - Chee,Wezen X
AU - Chandran,A
AU - Eapen,RS
AU - Waters,E
AU - Bricio-Moreno,L
AU - Tosi,T
AU - Dolan,S
AU - Millership,C
AU - Kadioglu,A
AU - Gründling,A
AU - Itzhaki,LS
AU - Welch,M
AU - Rahman,T
DO - 10.1021/acs.jcim.2c00300
EP - 2599
PY - 2022///
SN - 1549-9596
SP - 2586
TI - Structure-based discovery of lipoteichoic acid synthase inhibitors.
T2 - Journal of Chemical Information and Modeling
UR -
UR -
UR -
UR -
VL - 62
ER -