The MIM Lab develops robotic and mechatronics surgical systems for a variety of procedures.

Head of Group

Prof Ferdinando Rodriguez y Baena

B415C Bessemer Building
South Kensington Campus

+44 (0)20 7594 7046

⇒ X: @fmryb

 

What we do

The Mechatronics in Medicine Laboratory develops robotic and mechatronics surgical systems for a variety of procedures including neuro, cardiovascular, orthopaedic surgeries, and colonoscopies. Examples include bio-inspired catheters that can navigate along complex paths within the brain (such as EDEN2020), soft robots to explore endoluminal anatomies (such as the colon), and virtual reality solutions to support surgeons during knee replacement surgeries.

Why is it important

The integration of mechatronics into medicine addresses critical challenges in modern healthcare by enhancing the precision, safety, and efficiency of surgical procedures. Traditional surgeries often involve significant risks and extended recovery times. By developing robotic systems that offer greater accuracy and control, we aim to minimise these risks and reduce invasiveness. Our research contributes to the advancement of minimally invasive techniques, which are essential for improving patient outcomes and optimising healthcare resources. Furthermore, our work supports the training of the next generation of surgeons, equipping them with cutting-edge tools and methodologies that reflect the evolving landscape of medical technology.

How can it benefit patients

Patients stand to gain significantly from the innovations developed at the Mechatronics in Medicine Laboratory. Our robotic systems are designed to perform surgeries with enhanced precision, leading to fewer complications and faster recovery times. Minimally invasive procedures facilitated by our technologies result in less postoperative pain and reduced scarring, improving the overall patient experience. Additionally, the increased accuracy of our systems can lead to better surgical outcomes, such as more complete tumour removals or more precise joint replacements, thereby improving long-term health prospects. By pushing the boundaries of medical robotics, we strive to make advanced surgical care more accessible and effective for patients worldwide.

Meet the team

Citation

BibTex format

@inproceedings{Watts:2018:10.1007/978-3-319-89911-4_6,
author = {Watts, T and Secoli, R and Rodriguez, y Baena F},
doi = {10.1007/978-3-319-89911-4_6},
pages = {67--80},
publisher = {Springer},
title = {Modelling the deformation of biologically inspired flexible structures for needle steering},
url = {http://dx.doi.org/10.1007/978-3-319-89911-4_6},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Recent technical advances in minimally invasive surgery have been enabled by the development of new medical instruments and technologies. To date, the vast majority of mechanisms used within a clinical context are rigid, contrasting with the compliant nature of biological tissues. The field of robotics has seen an increased interest in flexible and compliant systems, and in this paper we investigate the behaviour of deformable multi-segment structures, which take their inspiration from the ovipositor design of parasitic wood wasps. These configurable structures have been shown to steer through highly compliant substrates, potentially enabling percutaneous access to the most delicate of tissues, such as the brain. The model presented here sheds light on how the deformation of the unique structure is related to its shape, and allows comparison between different potential designs. A finite element study is used to evaluate the proposed model, which is shown to provide a good fit (root-mean-square deviation 0.2636 mm for 4-segment case). The results show that both 3-segment and 4-segment designs are able to achieve deformation in all directions, however the magnitude of deformation is more consistent in the 4-segment case.
AU - Watts,T
AU - Secoli,R
AU - Rodriguez,y Baena F
DO - 10.1007/978-3-319-89911-4_6
EP - 80
PB - Springer
PY - 2018///
SN - 2211-0984
SP - 67
TI - Modelling the deformation of biologically inspired flexible structures for needle steering
UR - http://dx.doi.org/10.1007/978-3-319-89911-4_6
ER -

Contact Us

General enquiries

Facility enquiries


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location