The MIM Lab develops robotic and mechatronics surgical systems for a variety of procedures.

Head of Group

Prof Ferdinando Rodriguez y Baena

B415C Bessemer Building
South Kensington Campus

+44 (0)20 7594 7046

⇒ X: @fmryb

 

What we do

The Mechatronics in Medicine Laboratory develops robotic and mechatronics surgical systems for a variety of procedures including neuro, cardiovascular, orthopaedic surgeries, and colonoscopies. Examples include bio-inspired catheters that can navigate along complex paths within the brain (such as EDEN2020), soft robots to explore endoluminal anatomies (such as the colon), and virtual reality solutions to support surgeons during knee replacement surgeries.

Why is it important

The integration of mechatronics into medicine addresses critical challenges in modern healthcare by enhancing the precision, safety, and efficiency of surgical procedures. Traditional surgeries often involve significant risks and extended recovery times. By developing robotic systems that offer greater accuracy and control, we aim to minimise these risks and reduce invasiveness. Our research contributes to the advancement of minimally invasive techniques, which are essential for improving patient outcomes and optimising healthcare resources. Furthermore, our work supports the training of the next generation of surgeons, equipping them with cutting-edge tools and methodologies that reflect the evolving landscape of medical technology.

How can it benefit patients

Patients stand to gain significantly from the innovations developed at the Mechatronics in Medicine Laboratory. Our robotic systems are designed to perform surgeries with enhanced precision, leading to fewer complications and faster recovery times. Minimally invasive procedures facilitated by our technologies result in less postoperative pain and reduced scarring, improving the overall patient experience. Additionally, the increased accuracy of our systems can lead to better surgical outcomes, such as more complete tumour removals or more precise joint replacements, thereby improving long-term health prospects. By pushing the boundaries of medical robotics, we strive to make advanced surgical care more accessible and effective for patients worldwide.

Meet the team

Citation

BibTex format

@inproceedings{Secoli:2018:10.1109/ISMR.2018.8333302,
author = {Secoli, R and Rodriguez, y Baena F},
doi = {10.1109/ISMR.2018.8333302},
publisher = {IEEE},
title = {Experimental validation of curvature tracking with a programmable bevel-tip steerable needle},
url = {http://dx.doi.org/10.1109/ISMR.2018.8333302},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Needle steering systems are a topic of increasing research interest due to the many potential advantages associated with the ability to reach deep-seated targets while avoiding obstacles. Existing embodiments, such as those designed around a fixed bevel tip, are necessarily disruptive to the substrate, with the potential to cause a target to move away from the insertion trajectory, as well as potentially increasing the extent of tissue trauma at the needle interface, when compared to straight needles. To alleviate these issues, we proposed a biologically inspired design, which can steer without the need for duty-cycle spinning along the insertion axis or any active mechanisms at the tip. In this work, we demonstrate for the first time that our needle is able to steer within a deformable substrate, along with a user-defined trajectory in three-dimensional space. A simplified kinematic model is reported, which is subsequently used to design an adaptive strategy enabling the tracking of arbitrary curvatures along any given reference plane. Experimental results in gelatin are used to validate our model, as well as the performance of the controller under laboratory conditions.
AU - Secoli,R
AU - Rodriguez,y Baena F
DO - 10.1109/ISMR.2018.8333302
PB - IEEE
PY - 2018///
TI - Experimental validation of curvature tracking with a programmable bevel-tip steerable needle
UR - http://dx.doi.org/10.1109/ISMR.2018.8333302
ER -

Contact Us

General enquiries

Facility enquiries


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location