Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Topazian HM, Schmit N, Gerard-Ursin I, Charles GD, Thompson H, Ghani AC, Winskill Pet al., 2023,

    Modelling the relative cost-effectiveness of the RTS,S/AS01 malaria vaccine compared to investment in vector control or chemoprophylaxis.

    , Vaccine, Vol: 41, Pages: 3215-3223

    BACKGROUND: The World Health Organization has recommended a 4-dose schedule of the RTS,S/AS01 (RTS,S) vaccine for children in regions of moderate to high P. falciparum transmission. Faced with limited supply and finite resources, global funders and domestic malaria control programs will need to examine the relative cost-effectiveness of RTS,S and identify target areas for vaccine implementation relative to scale-up of existing interventions. METHODS: Using an individual-based mathematical model of P. falciparum, we modelled the cost-effectiveness of RTS,S across a range of settings in sub-Saharan Africa, incorporating various rainfall patterns, insecticide-treated net (ITN) use, treatment coverage, and parasite prevalence bands. We compare age-based and seasonal RTS,S administration to increasing ITN usage, switching to next generation ITNs in settings experiencing insecticide-resistance, and introduction of seasonal malaria chemoprevention (SMC) in areas of seasonal transmission. RESULTS: For RTS,S to be the most cost-effective intervention option considered, the maximum cost per dose was less than $9.30 USD in 90.9% of scenarios. Nearly all (89.8%) values at or above $9.30 USD per dose were in settings with 60% established bed net use and / or with established SMC, and 76.3% were in the highest PfPR2-10 band modelled (40%). Addition of RTS,S to strategies involving 60% ITN use, increased ITN usage or a switch to PBO nets, and SMC, if eligible, still led to significant marginal case reductions, with a median of 2,653 (IQR: 1,741 to 3,966) cases averted per 100,000 people annually, and 82,270 (IQR: 54,034 to 123,105) cases averted per 100,000 fully vaccinated children (receiving at least three doses). CONCLUSIONS: Use of RTS,S results in reductions in malaria cases and deaths even when layered upon existing interventions. When comparing relative cost-effectiveness, scale up of ITNs, introduction of SMC, and switching to new technology nets should be prioritized in e

  • Journal article
    Connelly SV, Brazeau NF, Msellem M, Ngasala BE, Aydemir O, Goel V, Niaré K, Giesbrecht DJ, Popkin-Hall ZR, Hennelly CM, Park Z, Moormann AM, Ong'echa JM, Verity R, Mohammed S, Shija SJ, Mhamilawa LE, Morris U, Mårtensson A, Lin JT, Björkman A, Juliano JJ, Bailey JAet al., 2023,

    Strong isolation by distance and evidence of population microstructure reflect ongoing Plasmodium falciparum transmission in Zanzibar.

    , medRxiv

    The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum . Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania, and continued local transmission. To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 391 P. falciparum isolates collected across Zanzibar and in Bagamoyo District on the coastal mainland from 2016-2018. Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, in Zanzibar the parasite population exhibits microstructure due to rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias , suggests ongoing low level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Our data support that importation remains a main source of genetic diversity and contribution to the parasite population on Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive for malaria reemergence due to susceptible hosts and competent vectors.

  • Journal article
    Whittaker C, Hamlet A, Sherrard-Smith E, Winskill P, Cuomo-Dannenburg G, Walker PGT, Sinka M, Pironon S, Kumar A, Ghani A, Bhatt S, Churcher TSet al., 2023,

    Seasonal dynamics of Anopheles stephensi and its implications for mosquito detection and emergent malaria control in the Horn of Africa

    , Proceedings of the National Academy of Sciences of USA, Vol: 120, Pages: 1-9, ISSN: 0027-8424

    Invasion of the malaria vector Anopheles stephensi across the Horn of Africa threatens control efforts across the continent, particularly in urban settings where the vector is able to proliferate. Malaria transmission is primarily determined by the abundance of dominant vectors, which often varies seasonally with rainfall. However, it remains unclear how An. stephensi abundance changes throughout the year, despite this being a crucial input to surveillance and control activities. We collate longitudinal catch data from across its endemic range to better understand the vector's seasonal dynamics and explore the implications of this seasonality for malaria surveillance and control across the Horn of Africa. Our analyses reveal pronounced variation in seasonal dynamics, the timing and nature of which are poorly predicted by rainfall patterns. Instead, they are associated with temperature and patterns of land use; frequently differing between rural and urban settings. Our results show that timing entomological surveys to coincide with rainy periods is unlikely to improve the likelihood of detecting An. stephensi. Integrating these results into a malaria transmission model, we show that timing indoor residual spraying campaigns to coincide with peak rainfall offers little improvement in reducing disease burden compared to starting in a random month. Our results suggest that unlike other malaria vectors in Africa, rainfall may be a poor guide to predicting the timing of peaks in An. stephensi-driven malaria transmission. This highlights the urgent need for longitudinal entomological monitoring of the vector in its new environments given recent invasion and potential spread across the continent.

  • Journal article
    Unwin H, Sherrard-Smith E, Churcher T, Ghani Aet al., 2023,

    Quantifying the direct and indirect protection provided by insecticide treated bed nets against malaria

    , Nature Communications, Vol: 14, Pages: 1-12, ISSN: 2041-1723

    Long lasting insecticidal nets (LLINs) provide both direct and indirect protection against malaria. As pyrethroid resistance evolves in mosquito vectors, it will be useful to understand how the specific benefits LLINs afford individuals and communities may be affected. Here we use modelling to show that there is no minimum LLIN usage needed for users and non-users to benefit from community protection. Modelling results also indicate that pyrethroid resistance in local mosquitoes will likely diminish the direct and indirect benefits from insecticides, leaving the barrier effects intact, but LLINs are still expected to provide enhanced benefit over untreated nets even at high levels of pyrethroid resistance.

  • Journal article
    Okell LC, Kwambai TK, Dhabangi A, Khairallah C, Nkosi-Gondwe T, Winskill P, Opoka R, Mousa A, Kühl M-J, Lucas TCD, Challenger JD, Idro R, Weiss DJ, Cairns M, Ter Kuile FO, Phiri K, Robberstad B, Mori ATet al., 2023,

    Projected health impact of post-discharge malaria chemoprevention among children with severe malarial anaemia in Africa

    , Nature Communications, Vol: 14, Pages: 1-10, ISSN: 2041-1723

    Children recovering from severe malarial anaemia (SMA) remain at high risk of readmission and death after discharge from hospital. However, a recent trial found that post-discharge malaria chemoprevention (PDMC) with dihydroartemisinin-piperaquine reduces this risk. We developed a mathematical model describing the daily incidence of uncomplicated and severe malaria requiring readmission among 0–5-year old children after hospitalised SMA. We fitted the model to a multicentre clinical PDMC trial using Bayesian methods and modelled the potential impact of PDMC across malaria-endemic African countries. In the 20 highest-burden countries, we estimate that only 2–5 children need to be given PDMC to prevent one hospitalised malaria episode, and less than 100 to prevent one death. If all hospitalised SMA cases access PDMC in moderate-to-high transmission areas, 38,600 (range 16,900–88,400) malaria-associated readmissions could be prevented annually, depending on access to hospital care. We estimate that recurrent SMA post-discharge constitutes 19% of all SMA episodes in moderate-to-high transmission settings.

  • Journal article
    Thompson HA, Hogan AB, Walker PGT, Winskill P, Zongo I, Sagara I, Tinto H, Ouedraogo J-B, Dicko A, Chandramohan D, Greenwood B, Cairns M, Ghani ACet al., 2022,

    Seasonal use case for the RTS,S/AS01 malaria vaccine: a mathematical modelling study

    , The Lancet Global Health, Vol: 10, Pages: e1782-e1792, ISSN: 2214-109X

    BACKGROUND: A 2021 clinical trial of seasonal RTS,S/AS01E (RTS,S) vaccination showed that vaccination was non-inferior to seasonal malaria chemoprevention (SMC) in preventing clinical malaria. The combination of these two interventions provided significant additional protection against clinical and severe malaria outcomes. Projections of the effect of this novel approach to RTS,S vaccination in seasonal transmission settings for extended timeframes and across a range of epidemiological settings are needed to inform policy recommendations. METHODS: We used a mathematical, individual-based model of malaria transmission that was fitted to data on the relationship between entomological inoculation rate and parasite prevalence, clinical disease, severe disease, and deaths from multiple sites across Africa. The model was validated with results from a phase 3b trial assessing the effect of SV-RTS,S in Mali and Burkina Faso. We developed three intervention efficacy models with varying degrees and durations of protection for our population-level modelling analysis to assess the potential effect of an RTS,S vaccination schedule based on age (doses were delivered to children aged 6 months, 7·5 months, and 9 months for the first three doses, and at 27 months of age for the fourth dose) or season (children aged 5-17 months at the time of first vaccination received the first three doses in the 3 months preceding the transmission season, with any subsequent doses up to five doses delivered annually) in seasonal transmission settings both in the absence and presence of SMC with sulfadoxine-pyrimethamine plus amodiaquine. This is modelled as a full therapeutic course delivered every month for four or five months of the peak in transmission season. Estimates of cases and deaths averted in a population of 100 000 children aged 0-5 years were calculated over a 15-year time period for a range of levels of malaria transmission intensity (Plasmodium falciparum parasite prevalence i

  • Report
    Topazian H, Schmit N, Gerard-Ursin I, Charles G, Thompson H, Ghani A, Winskill Pet al., 2022,

    Modelling the relative cost-effectiveness Of The Rts,S vaccine compared to other recommended malaria interventions

  • Journal article
    Samuels AM, Towett O, Seda B, Wiegand RE, Otieno K, Chomba M, Lucchi N, Ljolje D, Schneider K, Walker PGT, Kwambai TK, Slutsker L, Ter Kuile FO, Kariuki SKet al., 2022,

    Diagnostic Performance of Loop-Mediated Isothermal Amplification and Ultrasensitive Rapid Diagnostic Tests for Malaria Screening Among Pregnant Women in Kenya.

    , J Infect Dis, Vol: 226, Pages: 696-707

    BACKGROUND: Screen-and-treat strategies with sensitive diagnostic tests may reduce malaria-associated adverse pregnancy outcomes. We conducted a diagnostic accuracy study to evaluate new point-of-care tests to screen pregnant women for malaria at their first antenatal visit in western Kenya. METHODS: Consecutively women were tested for Plasmodium infection by expert microscopy, conventional rapid diagnostic test (cRDT), ultra sensitive RDT (usRDT), and loop-mediated isothermal amplification (LAMP). Photoinduced electron-transfer polymerase chain reaction (PET-PCR) served as the reference standard. Diagnostic performance was calculated and modelled at low parasite densities. RESULTS: Between May and September 2018, 172 of 482 screened participants (35.7%) were PET-PCR positive. Relative to PET-PCR, expert microscopy was least sensitive (40.1%; 95% confidence interval [CI], 32.7%-47.9%), followed by cRDT (49.4%; 95% CI, 41.7%-57.1), usRDT (54.7%; 95% CI, 46.9%-62.2%), and LAMP (68.6%; 95% CI, 61.1%-75.5%). Test sensitivities were comparable in febrile women (n = 90). Among afebrile women (n = 392), the geometric-mean parasite density was 29 parasites/µL and LAMP (sensitivity = 61.9%) and usRDT (43.2%) detected 1.74 (95% CI, 1.31-2.30) and 1.21 (95% CI, 88-2.21) more infections than cRDT (35.6%). Per our model, tests performed similarly at densities >200 parasites/µL. At 50 parasites/µL, the sensitivities were 45%, 56%, 62%, and 74% with expert microscopy, cRDT, usRDT, and LAMP, respectively. CONCLUSIONS: This first-generation usRDT provided moderate improvement in detecting low-density infections in afebrile pregnant women compared to cRDTs.

  • Journal article
    Watson OJ, Gao B, Nguyen TD, Tran TN-A, Penny MA, Smith DL, Okell L, Aguas R, Boni MFet al., 2022,

    Pre-existing partner-drug resistance to artemisinin combination therapies facilitates the emergence and spread of artemisinin resistance: a consensus modelling study

    , The Lancet Microbe, Vol: 3, Pages: e701-e710, ISSN: 2666-5247

    BACKGROUND: Artemisinin-resistant genotypes of Plasmodium falciparum have now emerged a minimum of six times on three continents despite recommendations that all artemisinins be deployed as artemisinin combination therapies (ACTs). Widespread resistance to the non-artemisinin partner drugs in ACTs has the potential to limit the clinical and resistance benefits provided by combination therapy. We aimed to model and evaluate the long-term effects of high levels of partner-drug resistance on the early emergence of artemisinin-resistant genotypes. METHODS: Using a consensus modelling approach, we used three individual-based mathematical models of Plasmodium falciparum transmission to evaluate the effects of pre-existing partner-drug resistance and ACT deployment on the evolution of artemisinin resistance. Each model simulates 100 000 individuals in a particular transmission setting (malaria prevalence of 1%, 5%, 10%, or 20%) with a daily time step that updates individuals' infection status, treatment status, immunity, genotype-specific parasite densities, and clinical state. We modelled varying access to antimalarial drugs if febrile (coverage of 20%, 40%, or 60%) with one primary ACT used as first-line therapy: dihydroartemisinin-piperaquine (DHA-PPQ), artesunate-amodiaquine (ASAQ), or artemether-lumefantrine (AL). The primary outcome was time until 0·25 580Y allele frequency for artemisinin resistance (the establishment time). FINDINGS: Higher frequencies of pre-existing partner-drug resistant genotypes lead to earlier establishment of artemisinin resistance. Across all models, a 10-fold increase in the frequency of partner-drug resistance genotypes on average corresponded to loss of artemisinin efficacy 2-12 years earlier. Most reductions in time to artemisinin resistance establishment were observed after an increase in frequency of the partner-drug resistance genotype from 0·0 to 0·10. INTERPRETATION: Partner-drug resistance in ACTs facil

  • Journal article
    Sherrard-Smith E, Ngufor C, Sanou A, Guelbeogo M, NGuessan R, Elobolobo E, Saute F, Varela K, Chaccour C, Zulliger R, Wagman J, Robertson ML, Rowland M, Donnelly M, Gonahasa S, Staedke S, Kolaczinski J, Churcher Tet al., 2022,

    Inferring the epidemiological benefit of indoor vector control interventions against malaria from mosquito data

    , Nature Communications, Vol: 13, ISSN: 2041-1723

    The cause of malaria transmission has been known for over a century but it is still unclear whether entomological measures are sufficiently reliable to inform policy decisions in human health. Decision-making on the effectiveness of new insecticide-treated nets (ITNs) and the indoor residual spraying of insecticide (IRS) have been based on epidemiological data, typically collected in cluster-randomised control trials. The number of these trials that can be conducted is limited. Here we use a systematic review to highlight that efficacy estimates of the same intervention may vary substantially between trials. Analyses indicate that mosquito data collected in experimental hut trials can be used to parameterize mechanistic models for Plasmodium falciparum malaria and reliably predict the epidemiological efficacy of quick-acting, neuro-acting ITNs and IRS. Results suggest that for certain types of ITNs and IRS using this framework instead of clinical endpoints could support policy and expedite the widespread use of novel technologies.

  • Journal article
    de Cola MA, Sawadogo B, Richardson S, Ibinaiye T, Traore A, Compaore CS, Oguoma C, Oresanya O, Tougri G, Rassi C, Roca-Feltrer A, Walker P, Okell LCet al., 2022,

    Impact of seasonal malaria chemoprevention on prevalence of malaria infection in malaria indicator surveys in Burkina Faso and Nigeria

    , BMJ Global Health, Vol: 7, Pages: 1-11, ISSN: 2059-7908

    Background In 2012, the WHO issued a policy recommendation for the use of seasonal malaria chemoprevention (SMC) to children 3–59 months in areas of highly seasonal malaria transmission. Clinical trials have found SMC to prevent around 75% of clinical malaria. Impact under routine programmatic conditions has been assessed during research studies but there is a need to identify sustainable methods to monitor impact using routinely collected data.Methods Data from Demographic Health Surveys were merged with rainfall, geographical and programme data in Burkina Faso (2010, 2014, 2017) and Nigeria (2010, 2015, 2018) to assess impact of SMC. We conducted mixed-effects logistic regression to predict presence of malaria infection in children aged 6–59 months (rapid diagnostic test (RDT) and microscopy, separately).Results We found strong evidence that SMC administration decreases odds of malaria measured by RDT during SMC programmes, after controlling for seasonal factors, age, sex, net use and other variables (Burkina Faso OR 0.28, 95% CI 0.21 to 0.37, p<0.001; Nigeria OR 0.40, 95% CI 0.30 to 0.55, p<0.001). The odds of malaria were lower up to 2 months post-SMC in Burkina Faso (1-month post-SMC: OR 0.29, 95% CI 0.12 to 0.72, p=0.01; 2 months post-SMC: OR: 0.33, 95% CI 0.17 to 0.64, p<0.001). The odds of malaria were lower up to 1 month post-SMC in Nigeria but was not statistically significant (1-month post-SMC 0.49, 95% CI 0.23 to 1.05, p=0.07). A similar but weaker effect was seen for microscopy (Burkina Faso OR 0.38, 95% CI 0.29 to 0.52, p<0.001; Nigeria OR 0.53, 95% CI 0.38 to 0.76, p<0.001).Conclusions Impact of SMC can be detected in reduced prevalence of malaria from data collected through household surveys if conducted during SMC administration or within 2 months afterwards. Such evidence could contribute to broader evaluation of impact of SMC programmes.

  • Journal article
    Whittaker C, Winskill P, Sinka M, Pironon S, Massey C, Weiss DJ, Nguyen M, Gething PW, Kumar A, Ghani A, Bhatt Set al., 2022,

    A novel statistical framework for exploring the population dynamics and seasonality of mosquito populations

    , Proceedings of the Royal Society B: Biological Sciences, Vol: 289, Pages: 1-10, ISSN: 0962-8452

    Understanding the temporal dynamics of mosquito populations underlying vector-borne disease transmission is key to optimizing control strategies. Many questions remain surrounding the drivers of these dynamics and how they vary between species—questions rarely answerable from individual entomological studies (that typically focus on a single location or species). We develop a novel statistical framework enabling identification and classification of time series with similar temporal properties, and use this framework to systematically explore variation in population dynamics and seasonality in anopheline mosquito time series catch data spanning seven species, 40 years and 117 locations across mainland India. Our analyses reveal pronounced variation in dynamics across locations and between species in the extent of seasonality and timing of seasonal peaks. However, we show that these diverse dynamics can be clustered into four ‘dynamical archetypes’, each characterized by distinct temporal properties and associated with a largely unique set of environmental factors. Our results highlight that a range of environmental factors including rainfall, temperature, proximity to static water bodies and patterns of land use (particularly urbanicity) shape the dynamics and seasonality of mosquito populations, and provide a generically applicable framework to better identify and understand patterns of seasonal variation in vectors relevant to public health.

  • Journal article
    Green N, Agossa F, Yovogan B, Oxborough R, Kitau J, Müller P, Constant E, Rowland M, Tchacaya EFS, Benjamin KG, Churcher TS, Betancourt M, Sherrard-Smith Eet al., 2022,

    An evidence synthesis approach for combining different data sources illustrated using entomological efficacy of insecticides for indoor residual spraying

    , PLoS One, Vol: 17, Pages: e0263446-e0263446, ISSN: 1932-6203

    BackgroundProspective malaria public health interventions are initially tested for entomological impact using standardised experimental hut trials. In some cases, data are collated as aggregated counts of potential outcomes from mosquito feeding attempts given the presence of an insecticidal intervention. Comprehensive data i.e. full breakdowns of probable outcomes of mosquito feeding attempts, are more rarely available. Bayesian evidence synthesis is a framework that explicitly combines data sources to enable the joint estimation of parameters and their uncertainties. The aggregated and comprehensive data can be combined using an evidence synthesis approach to enhance our inference about the potential impact of vector control products across different settings over time.MethodsAggregated and comprehensive data from a meta-analysis of the impact of Pirimiphos-methyl, an indoor residual spray (IRS) product active ingredient, used on wall surfaces to kill mosquitoes and reduce malaria transmission, were analysed using a series of statistical models to understand the benefits and limitations of each.ResultsMany more data are available in aggregated format (N = 23 datasets, 4 studies) relative to comprehensive format (N = 2 datasets, 1 study). The evidence synthesis model had the smallest uncertainty at predicting the probability of mosquitoes dying or surviving and blood-feeding. Generating odds ratios from the correlated Bernoulli random sample indicates that when mortality and blood-feeding are positively correlated, as exhibited in our data, the number of successfully fed mosquitoes will be under-estimated. Analysis of either dataset alone is problematic because aggregated data require an assumption of independence and there are few and variable data in the comprehensive format.ConclusionsWe developed an approach to combine sources from trials to maximise the inference that can be made from such data and that is applicable to other systems. Bayesian evidence synthes

  • Journal article
    Sherrard-Smith E, Winskill P, Hamlet A, Ngufor C, N'Guessan R, Guelbeogo MW, Sanou A, Nash RK, Hill A, Russell EL, Woodbridge M, Tungu P, Kont MD, McLean T, Fornadel C, Richardson JH, Donnelly MJ, Staedke SG, Gonahasa S, Protopopoff N, Rowland M, Churcher TSet al., 2022,

    Optimising the deployment of vector control tools against malaria: a data-informed modelling study

    , The Lancet Planetary Health, Vol: 6, Pages: e100-e109, ISSN: 2542-5196

    Background Concern that insecticide resistant mosquitoes are threatening malaria control has driven the development of new types of insecticide treated nets (ITNs) and indoor residual spraying (IRS). Malaria control programmes have a choice of vector control interventions though it is unclear which should be used to combat the disease.MethodsThe entomological impact of ITNs combining a pyrethroid insecticide with the synergist piperonyl butoxide (PBO) is characterised from experimental hut trials and used to parameterise a malaria transmission dynamics model. Model projections are validated for two sites by comparing results to data from pyrethroid-PBO ITN and IRS randomised control trials (RCTs). Models are used to identify optimum intervention packages for scenarios with varying budget, price, entomological and epidemiological factors. Findings Combining entomological data and models can reasonably predict changes in malaria in the Tanzanian and Ugandan RCTs. Models indicate switching from pyrethroid-only to pyrethroid-PBO ITNs could avert up to twice as many cases, though the additional benefit is highly variable and depends upon setting. Annual delivery of long-lasting, non-pyrethroid IRS is projected to prevent substantially more cases over 3-years, but pyrethroid-PBO ITNs tend to be the most cost-effective intervention per case averted. An online tool (MINT) provides users with a method of designing intervention packages given their setting and budget. InterpretationThe most cost-effective vector control package will vary locally. Models able to recreate results of RCTs can be used to extrapolate outcomes elsewhere to support evidence-based decision making for investment in vector control.FundingMedical Research Council, IVCC, Wellcome Trust.

  • Journal article
    Unwin H, Mwandigha L, Winskill P, Ghani A, Hogan Aet al., 2021,

    Analysis of the potential for a malaria vaccine to reduce gaps in malaria intervention coverage

    , Malaria Journal, Vol: 20, Pages: 1-11, ISSN: 1475-2875

    BackgroundThe RTS,S/AS01 malaria vaccine is currently being evaluated in a cluster-randomized pilot implementation programme in three African countries. This study seeks to identify whether vaccination could reach additional children who are at risk from malaria but do not currently have access to, or use, core malaria interventions.MethodsUsing data from household surveys, the overlap between malaria intervention coverage and childhood vaccination (diphtheria-tetanus-pertussis dose 3, DTP3) uptake in 20 African countries with at least one first administrative level unit with Plasmodium falciparum parasite prevalence greater than 10% was calculated. Multilevel logistic regression was used to explore patterns of overlap by demographic and socioeconomic variables. The public health impact of delivering RTS,S/AS01 to those children who do not use an insecticide-treated net (ITN), but who received the DTP3 vaccine, was also estimated.ResultsUptake of DTP3 was higher than malaria intervention coverage in most countries. Overall, 34% of children did not use ITNs and received DTP3, while 35% of children used ITNs and received DTP3, although this breakdown varied by country. It was estimated that there are 33 million children in these 20 countries who do not use an ITN. Of these, 23 million (70%) received the DTP3 vaccine. Vaccinating those 23 million children who receive DTP3 but do not use an ITN could avert up to an estimated 9.7 million (range 8.5–10.8 million) clinical malaria cases each year, assuming all children who receive DTP3 are administered all four RTS,S doses. An additional 10.8 million (9.5–12.0 million) cases could be averted by vaccinating those 24 million children who receive the DTP3 vaccine and use an ITN. Children who had access to or used an ITN were 9–13% more likely to reside in rural areas compared to those who had neither intervention regardless of vaccination status. Mothers’ education status was a strong predictor of inte

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=936&limit=15&respub-action=search.html Current Millis: 1685952915277 Current Time: Mon Jun 05 09:15:15 BST 2023