Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Neyret M, Le Provost G, Boesing AL, Schneider FD, Baulechner D, Bergmann J, de Vries FT, Fiore-Donno AM, Geisen S, Goldmann K, Merges A, Saifutdinov RA, Simons NK, Tobias JA, Zaitsev AS, Gossner MM, Jung K, Kandeler E, Krauss J, Penone C, Schloter M, Schulz S, Staab M, Wolters V, Apostolakis A, Birkhofer K, Boch S, Boeddinghaus RS, Bolliger R, Bonkowski M, Buscot F, Dumack K, Fischer M, Gan HY, Heinze J, Hölzel N, John K, Klaus VH, Kleinebecker T, Marhan S, Müller J, Renner SC, Rillig MC, Schenk NV, Schöning I, Schrumpf M, Seibold S, Socher SA, Solly EF, Teuscher M, van Kleunen M, Wubet T, Manning Pet al., 2024,

    A slow-fast trait continuum at the whole community level in relation to land-use intensification.

    , Nat Commun, Vol: 15

    Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.

  • Journal article
    Drury JP, Clavel J, Tobias JA, Rolland J, Sheard C, Morlon Het al., 2024,

    Limited ecological opportunity influences the tempo of morphological evolution in birds

    , Current Biology, Vol: 34, Pages: 661-669.E4, ISSN: 0960-9822

    According to classic models of lineage diversification and adaptive radiation, phenotypic evolution should accelerate in the context of ecological opportunity and slow down when niches become saturated.1,2 However, only weak support for these ideas has been found in nature, perhaps because most analyses make the biologically unrealistic assumption that clade members contribute equally to reducing ecological opportunity, even when they occur in different continents or specialize on different habitats and diets. To view this problem through a different lens, we adapted a new phylogenetic modeling approach that accounts for the fact that competition for ecological opportunity only occurs between species that coexist and share similar habitats and diets. Applying this method to trait data for nearly all extant species of landbirds,3 we find a widespread signature of decelerating trait evolution in lineages adapted to similar habitats or diets. The strength of this pattern was consistent across latitudes when comparing tropical and temperate assemblages. Our results provide little support for the idea that increased diversity and tighter packing of niches accentuates evolutionary slowdowns in the tropics and instead suggest that limited ecological opportunity can be an important factor determining the rate of morphological diversification at a global scale.

  • Journal article
    Hatfield JH, Banks-Leite C, Barlow J, Lees AC, Tobias JAet al., 2024,

    Constraints on avian seed dispersal reduce potential for resilience in degraded tropical forests

    , Functional Ecology, Vol: 38, Pages: 315-326, ISSN: 0269-8463

    Seed dispersal is fundamental to tropical forest resilience. Forest loss or degradation typically leads to defaunation, altering seed transfer dynamics and impairing the ability of forested habitats to regenerate or recover from perturbation. However, the extent of defaunation, and its likely impacts on the seed dispersers needed to restore highly degraded or clear-felled areas, remains poorly understood in tropical forest landscapes. To quantify defaunation of seed-dispersing birds, we used field survey data from 499 transects in three forested regions of Brazil, first comparing the observed assemblages with those predicted by geographic range maps, and then assessing habitat associations of frugivores across land cover gradients. We found that current bird assemblages have lower functional diversity (FD) than predicted by species range maps in Amazonia (4%–6%), with a greater reduction in FD (28%) for the Atlantic Forest, which has been more heavily deforested for a longer period. Direct measures of seed dispersal are difficult to obtain, so we focused on potential seed transfer inferred from shared species occurrence. Of 83 predominantly frugivorous bird species recorded in relatively intact forests, we show that 10% were absent from degraded forest, and 57% absent from the surrounding matrix of agricultural land covers, including many large-gaped species. Of 112 frugivorous species using degraded forest, 47% were absent from matrix habitats. Overall, frugivores occurring in both intact forest and matrix habitats were outnumbered by (mostly small-gaped) frugivores occurring in both degraded forest and matrix habitats (23 additional species; 64% higher diversity). These findings suggest that birds have the potential to disperse seeds from intact and degraded forest to adjacent cleared lands, but that direct seed transfer from intact forests is limited, particularly for large-seeded trees. Degraded forests may play a vital role in supporting natural regenerat

  • Journal article
    Cruz-Silva E, Harrion SP, Prentice IC, Marinova Eet al., 2024,

    Holocene vegetation dynamics of the Eastern Mediterranean region: old controversies addressed by a new analysis

    , Journal of Biogeography, Vol: 51, Pages: 294-310, ISSN: 0305-0270

    Aim:We reconstruct vegetation changes since 12 ky in the Eastern Mediterranean to examine four features of the regional vegetation history that are controversial: the extent of non-analogue vegetation assemblages in the transition from the Late Glacial to the early Holocene, the synchroneity of postglacial forest expansion, the geographical extent of temperate deciduous forest during the mid-Holocene and the timing and trigger for the re-establishment of drought-tolerant vegetation during the late Holocene.Location:The Eastern Mediterranean–Black Sea Caspian Corridor.Taxon:Vascular plants.Methods:We reconstruct vegetation changes for 122 fossil pollen records using a method that accounts for within-biome variability in pollen taxon abundance to determine the biome with which a sample has greatest affinity. Per-biome affinity threshold values were used to identify samples that do not belong to any modern biome. We apply time series analysis and mapping to examine space and time changes.Results:Sites with non-analogue vegetation were most common between 11.5 and 9.5 ky and mostly in the Carpathians. The transition from open vegetation to forest occurred at 10.64 ± 0.65 ky across the whole region. Temperate deciduous forest was not more extensive at 6 ky; maximum expansion occurred between 5.5 and 5 ky. Expansion of forest occurred between c. 4 and 2.8 k, followed by an abrupt decrease and a subsequent recovery. This pattern is not consistent with a systematic decline of forest towards more drought-tolerant vegetation in the late Holocene but is consistent with centennial-scale speleothem patterns linked to variations in moisture availability.Main Conclusions:We show the occurrence of non-analogue vegetation types peaked during early Holocene, forest expansion was synchronous across the region and there was an expansion of moisture-demanding temperate trees around 5.5 to 5 ky. There is no signal of a continuous late Holocene aridificat

  • Journal article
    Cantwell-Jones A, Tylianakis J, Larson K, Gill Ret al., 2024,

    Using individual-based trait frequency distributions to forecast plant-pollinator network responses to environmental change

    , Ecology Letters, Vol: 27, ISSN: 1461-023X

    Determining how and why organisms interact is fundamental to understanding ecosystem responses to future environmental change. To assess the impact on plant-pollinator interactions, recent studies have examined how the effects of environmental change on individual interactions accumulate to generate species-level responses. Here, we review recent developments in using plant-pollinator networks of interacting individuals along with their functional traits, where individuals are nested within species nodes. We highlight how these individual-level, trait-based networks connect intraspecific trait variation (as frequency distributions of multiple traits) with dynamic responses within plant-pollinator communities. This approach can better explain interaction plasticity, and changes to interaction probabilities and network structure over spatiotemporal or other environmental gradients. We argue that only through appreciating such trait-based interaction plasticity can we accurately forecast the potential vulnerability of interactions to future environmental change. We follow this with general guidance on how future studies can collect and analyse high-resolution interaction and trait data, with the hope of improving predictions of future plant-pollinator network responses for targeted and effective conservation.

  • Journal article
    Pawar S, Huxley PJ, Smallwood TRC, Nesbit ML, Chan AHH, Shocket MS, Johnson LR, Kontopoulos D-G, Cator LJet al., 2024,

    Variation in temperature of peak trait performance constrains adaptation of arthropod populations to climatic warming.

    , Nat Ecol Evol

    The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.

  • Journal article
    Prentice IC, Keeping T, Harrison SP, 2024,

    Modelling the Daily Probability of Wildfire Occurrence in the Contiguous United States

    , Environmental Research Letters, ISSN: 1748-9326
  • Journal article
    Perkins R, Barron L, Glauser G, Whitehead M, Woodward G, Goulson Det al., 2024,

    Down-the-drain pathways for fipronil and imidacloprid applied as spot-on parasiticides to dogs: Estimating aquatic pollution.

    , Sci Total Environ, Vol: 917

    Fipronil and imidacloprid have been widely detected in UK surface waters in recent years, often at concentrations that ecotoxicological studies have shown can harm aquatic life. Down-the-drain (DTD) passage of pet flea and tick treatments are being implicated as an important source, with many of the UK's 22 million cats and dogs receiving routine, year-round preventative doses containing these parasiticides. The UK Water Industry's 3rd Chemical Investigation Programme (UKWIR CIP3) has confirmed wastewater as a major entry pathway for these chemicals into surface waters, but the routes by which they enter the wastewater system remain unclear. We addressed this knowledge gap by conducting the first quantification of DTD emissions from 98 dogs treated with spot-on ectoparasiticides containing fipronil or imidacloprid, through bathing, bed washing and washing of owners' hands. Both chemicals were detected in 100 % of washoff samples, with bathing accounting for the largest emissions per event (up to 16.8 % of applied imidacloprid and 24.5 % of applied fipronil). Modelled to account for the frequency of emitting activities, owner handwashing was identified as the largest source of DTD emissions from the population overall, with handwash emissions occurring for at least 28 days following product application and an estimated 4.9 % of imidacloprid and 3.1 % of fipronil applied in dog spot-ons passing down-the-drain via this route. The normalised daily per capita emissions for all routes combined were 8.7 μg/person/day for imidacloprid and 2.1 μg/person/day for fipronil, equivalent to 20-40 % of the daily per capita load in wastewater, as estimated from UKWIR CIP3 data. Within the current international regulatory framework adhered to by the UK, the environmental exposure of veterinary medicines intended for use in small companion animals is assumed to be low, and DTD pathways are not considered. We recommend a systematic rev

  • Journal article
    Gumbs R, Scott O, Bates R, Böhm M, Forest F, Gray CL, Hoffmann M, Kane D, Low C, Pearse WD, Pipins S, Tapley B, Turvey ST, Jetz W, Owen NR, Rosindell Jet al., 2024,

    Global conservation status of the jawed vertebrate Tree of Life

    , Nature Communications, ISSN: 2041-1723

    Human-driven extinction threatens entire lineages across the Tree of Life. Here we assess the conservation status of jawed vertebrate evolutionary history, using three policy-relevant approaches. First, we calculate an index of threat to overall evolutionary history, showing that we expect to lose 86-150 billion years (11-19%) of jawed vertebrate evolutionary history over the next 50-500 years. Second, we rank jawed vertebrate species by their EDGE scores to identify the highest priorities for species-focused conservation of evolutionary history, finding that chondrichthyans, ray-finned fish and testudines rank highest of all jawed vertebrates. Third, we assess the conservation status of jawed vertebrate families. We found that species within monotypic families are more likely to be threatened and more likely to be in decline than other species. We provide a baseline for the status of families at risk of extinction to catalyse conservation action. This work continues a trend of highlighting neglected groups—such as testudines, crocodylians, amphibians and chondrichthyans—as conservation priorities from a phylogenetic perspective.

  • Journal article
    Savolainen V, Bailey NW, Diamond L, Swift-Gallant A, Gavrilets S, Raymond M, Verweij KJHet al., 2024,

    A broader cultural view is necessary to study the evolution of sexual orientation

    , Nature Ecology and Evolution, ISSN: 2397-334X

    The causation of sexual orientation is likely to be complex and influenced by multiple factors1. We advocate incorporating a broader cultural view into evolutionary andgenetic studies to account for differences in how sexual orientation is experienced, expressed, and understood in both human and non-human animals.

  • Journal article
    Ren Y, Wang H, Harrison SP, Prentice IC, Atkin OK, Smith NG, Mengoli G, Stefanski A, Reich PBet al., 2024,

    Reduced global plant respiration due to the acclimation of leaf dark respiration coupled to photosynthesis

    , New Phytologist, Vol: 241, Pages: 578-591, ISSN: 0028-646X

    Leaf dark respiration (Rd) acclimates to environmental changes. However, the magnitude, controls and time scales of acclimation remain unclear and are inconsistently treated in ecosystem models. We hypothesized that Rd and Rubisco carboxylation capacity (Vcmax) at 25°C (Rd,25, Vcmax,25) are coordinated so that Rd,25 variations support Vcmax,25 at a level allowing full light use, with Vcmax,25 reflecting daytime conditions (for photosynthesis), and Rd,25/Vcmax,25 reflecting night-time conditions (for starch degradation and sucrose export). We tested this hypothesis temporally using a 5-yr warming experiment, and spatially using an extensive field-measurement data set. We compared the results to three published alternatives: Rd,25 declines linearly with daily average prior temperature; Rd at average prior night temperatures tends towards a constant value; and Rd,25/Vcmax,25 is constant. Our hypothesis accounted for more variation in observed Rd,25 over time (R2 = 0.74) and space (R2 = 0.68) than the alternatives. Night-time temperature dominated the seasonal time-course of Rd, with an apparent response time scale of c. 2 wk. Vcmax dominated the spatial patterns. Our acclimation hypothesis results in a smaller increase in global Rd in response to rising CO2 and warming than is projected by the two of three alternative hypotheses, and by current models.

  • Journal article
    Liu Y, Olsson A, Larva T, Cantwell-Jones A, Gill RJ, Cederberg B, Webster MTet al., 2023,

    Genomic variation in montane bumblebees in Scandinavia: high levels of intraspecific diversity despite population vulnerability.

    , Molecular Ecology, ISSN: 0962-1083

    Populations of many bumblebee species are declining, with distributions shifting northwards to track suitable climates. Climate change is considered a major contributing factor. Arctic species are particularly vulnerable as they cannot shift further north, making assessment of their population viability important. Analysis of levels of whole-genome variation is a powerful way to analyse population declines and fragmentation. Here, we use genome sequencing to analyse genetic variation in seven species of bumblebee from the Scandinavian mountains, including two classified as vulnerable. We sequenced 333 samples from across the ranges of these species in Sweden. Estimates of effective population size (NE ) vary from ~55,000 for species with restricted high alpine distributions to 220,000 for more widespread species. Population fragmentation is generally very low or undetectable over large distances in the mountains, suggesting an absence of barriers to gene flow. The relatively high NE and low population structure indicate that none of the species are at immediate risk of negative genetic effects caused by high levels of genetic drift. However, reconstruction of historical fluctuations in NE indicates that the arctic specialist species Bombus hyperboreus has experienced population declines since the last ice age and we detected one highly inbred diploid male of this species close to the southern limit of its range, potentially indicating elevated genetic load. Although the levels of genetic variation in montane bumblebee populations are currently relatively high, their ranges are predicted to shrink drastically due to the effects of climate change and monitoring is essential to detect future population declines.

  • Journal article
    Rosindell J, Manson K, Gumbs R, Pearse WD, Steel Met al., 2023,

    Phylogenetic Biodiversity Metrics Should Account for Both Accumulation and Attrition of Evolutionary Heritage.

    , Syst Biol

    Phylogenetic metrics are essential tools used in the study of ecology, evolution and conservation. Phylogenetic diversity (PD) in particular is one of the most prominent measures of biodiversity, and is based on the idea that biological features accumulate along the edges of phylogenetic trees that are summed. We argue that PD and many other phylogenetic biodiversity metrics fail to capture an essential process that we term attrition. Attrition is the gradual loss of features through causes other than extinction. Here we introduce 'EvoHeritage', a generalisation of PD that is founded on the joint processes of accumulation and attrition of features. We argue that whilst PD measures evolutionary history, EvoHeritage is required to capture a more pertinent subset of evolutionary history including only components that have survived attrition. We show that EvoHeritage is not the same as PD on a tree with scaled edges; instead, accumulation and attrition interact in a more complex non-monophyletic way that cannot be captured by edge lengths alone. This leads us to speculate that the one dimensional edge lengths of classic trees may be insufficiently flexible to capture the nuances of evolutionary processes. We derive a measure of EvoHeritage and show that it elegantly reproduces species richness and PD at opposite ends of a continuum based on the intensity of attrition. We demonstrate the utility of EvoHeritage in ecology as a predictor of community productivity compared with species richness and PD. We also show how EvoHeritage can quantify living fossils and resolve their associated controversy. We suggest how the existing calculus of PD-based metrics and other phylogenetic biodiversity metrics can and should be recast in terms of EvoHeritage accumulation and attrition.

  • Journal article
    González-Ferreras AM, Barquín J, Blyth PSA, Hawksley J, Kinsella H, Lauridsen R, Morris OF, Peñas FJ, Thomas GE, Woodward G, Zhao L, O'Gorman EJet al., 2023,

    Chronic exposure to environmental temperature attenuates the thermal sensitivity of salmonids.

    , Nat Commun, Vol: 14

    Metabolism, the biological processing of energy and materials, scales predictably with temperature and body size. Temperature effects on metabolism are normally studied via acute exposures, which overlooks the capacity for organisms to moderate their metabolism following chronic exposure to warming. Here, we conduct respirometry assays in situ and after transplanting salmonid fish among different streams to disentangle the effects of chronic and acute thermal exposure. We find a clear temperature dependence of metabolism for the transplants, but not the in-situ assays, indicating that chronic exposure to warming can attenuate salmonid thermal sensitivity. A bioenergetic model accurately captures the presence of fish in warmer streams when accounting for chronic exposure, whereas it incorrectly predicts their local extinction with warming when incorporating the acute temperature dependence of metabolism. This highlights the need to incorporate the potential for thermal acclimation or adaptation when forecasting the consequences of global warming on ecosystems.

  • Journal article
    Eberhart-Hertel LJ, Rodrigues LF, Krietsch J, Hertel AG, Cruz-López M, Vázquez-Rojas KA, González-Medina E, Schroeder J, Küpper Cet al., 2023,

    Egg size variation in the context of polyandry: a case study using long-term field data from snowy plovers.

    , Evolution, Vol: 77, Pages: 2590-2605

    Gamete size variation between the sexes is central to the concept of sex roles, however, to what extent gamete size variation within the sexes relates to sex role variation remains unclear. Comparative and theoretical studies suggest that, when clutch size is invariable, polyandry is linked to a reduction of egg size, while increased female-female competition for mates favors early breeding when females cannot monopolize multiple males. To understand whether and how breeding phenology, egg size, and mating behavior are related at the individual level, we studied the reproductive histories of 424 snowy plover females observed in the wild over a 15-year period. Egg size, but not polyandry, were highly repeatable for individual females. Consistent with theoretical predictions, we found that polyandrous females were the earliest breeders and that early clutches contained smaller eggs than clutches initiated later. Neither egg size nor mating behavior showed clear signs of an age-related deterioration, on the contrary, prior experience acquired either through age or local recruitment enabled females to nest early. Taken together, these results suggest that gamete size variation is not linked to mating behavior at the individual level, and, consequently, the adaptive potential of such variation appears to be limited.

  • Journal article
    Ruehr S, Keenan TF, Williams C, Zhou Y, Lu X, Bastos A, Canadell JG, Prentice IC, Sitch S, Terrer Cet al., 2023,

    Publisher Correction: Evidence and attribution of the enhanced land carbon sink (Nature Reviews Earth & Environment, (2023), 4, 8, (518-534), 10.1038/s43017-023-00456-3)

    , Nature Reviews Earth and Environment, Vol: 4

    Correction to: Nature Reviews Earth & Environment, published online 25 July 2023. In the version of the article initially published, the y-axis labels in Fig. 7b, now reading “+” and “–”, read “234” and “254”, respectively. This has been corrected in the HTML and PDF versions of the article.

  • Journal article
    Peng Y, Prentice IC, Bloomfield KJ, Campioli M, Guo Z, Sun Y, Tian D, Wang X, Vicca S, Stocker BDet al., 2023,

    Global terrestrial nitrogen uptake and nitrogen use efficiency

    , Journal of Ecology, Vol: 111, Pages: 2676-2693, ISSN: 0022-0477

    1. Plant biomass production (BP), nitrogen uptake (Nup) and their ratio, nitrogen use efficiency (NUE), must be quantified to understand how nitrogen (N) cycling constrains terrestrial carbon (C) uptake. But the controls of key plant processes determining Nup and NUE, including BP, C and N allocation, tissue C:N ratios and N resorption efficiency (NRE), remain poorly known. 2. We compiled measurements from 804 forest and grassland sites and derived regression models for each of these processes with growth temperature, vapour pressure deficit, stand age, soil C:N ratio, fAPAR (remotely sensed fraction of photosynthetically active radiation absorbed by green vegetation) and growing-season average daily incident photosynthetic photon flux density (gPPFD) (effectively the seasonal concentration of light availability, which increases polewards) as predictors. An empirical model for leaf N was based on optimal photosynthetic capacity (a function of gPPFD and climate) and observed leaf mass-per-area. The models were used to produce global maps of Nup and NUE. 3. Global BP was estimated as 72 Pg C/yr; Nup as 950 Tg N/yr; and NUE as 76 gC/gN. Forest BP was found to increase with growth temperature and fAPAR and to decrease with stand age, soil C:N ratio and gPPFD. Forest NUE is controlled primarily by climate through its effect on C allocation – especially to leaves, being richer in N than other tissues. NUE is greater in colder climates, where N is less readily available, because belowground allocation is increased. NUE is also greater in drier climates because leaf allocation is reduced. NRE is enhanced (further promoting NUE) in both cold and dry climates. 4. These findings can provide observationally based benchmarks for model representations of C–N cycle coupling. State-of-the-art vegetation models in the TRENDY ensemble showed variable performance against these benchmarks, and models including coupled C–N cycling produced relatively poor simulations o

  • Journal article
    Keenan TF, Luo X, Stocker BD, De Kauwe MG, Medlyn BE, Prentice IC, Smith NG, Terrer C, Wang H, Zhang Y, Zhou Set al., 2023,

    A constraint on historic growth in global photosynthesis due to rising CO2

    , Nature Climate Change, Vol: 13, Pages: 1376-1381, ISSN: 1758-678X

    Theory predicts that rising CO2 increases global photosynthesis, a process known as CO2 fertilization, and that this is responsible for a large proportion of the current terrestrial carbon sink. The estimated magnitude of the historic CO2 fertilization, however, differs by an order ofmagnitude between long-term proxies, remote sensing-based estimates and terrestrial biosphere models. Here we constrain the likely historic effect of CO2 on global photosynthesis by combining terrestrial biosphere models, ecological optimality theory, remote sensing approaches and an emergent constraint based on global carbon budget estimates. Our analysis suggests that CO2 fertilization increased global annual terrestrial photosynthesis by 13.5 ± 3.5%, or 15.9 ± 2.9 Pg C u(mean ± standard deviation) between 1981 and 2020. Our results help resolve conflicting estimates of the historic sensitivity of global terrestrial photosynthesis to CO2 and highlight the large impact anthropogenic emissions have had on ecosystems worldwide.

  • Journal article
    Gonzalez A, Vihervaara P, Balvanera P, Bates AE, Bayraktarov E, Bellingham PJ, Bruder A, Campbell J, Catchen MD, Cavender-Bares J, Chase J, Coops N, Costello MJ, Czúcz B, Delavaud A, Dornelas M, Dubois G, Duffy EJ, Eggermont H, Fernandez M, Fernandez N, Ferrier S, Geller GN, Gill M, Gravel D, Guerra CA, Guralnick R, Harfoot M, Hirsch T, Hoban S, Hughes AC, Hugo W, Hunter ME, Isbell F, Jetz W, Juergens N, Kissling WD, Krug CB, Kullberg P, Le Bras Y, Leung B, Londoño-Murcia MC, Lord J-M, Loreau M, Luers A, Ma K, MacDonald AJ, Maes J, McGeoch M, Mihoub JB, Millette KL, Molnar Z, Montes E, Mori AS, Muller-Karger FE, Muraoka H, Nakaoka M, Navarro L, Newbold T, Niamir A, Obura D, O'Connor M, Paganini M, Pelletier D, Pereira H, Poisot T, Pollock LJ, Purvis A, Radulovici A, Rocchini D, Roeoesli C, Schaepman M, Schaepman-Strub G, Schmeller DS, Schmiedel U, Schneider FD, Shakya MM, Skidmore A, Skowno AL, Takeuchi Y, Tuanmu M-N, Turak E, Turner W, Urban MC, Urbina-Cardona N, Valbuena R, Van de Putte A, van Havre B, Wingate VR, Wright E, Torrelio CZet al., 2023,

    Author Correction: A global biodiversity observing system to unite monitoring and guide action.

    , Nat Ecol Evol, Vol: 7
  • Journal article
    Dimitrov D, Xu X, Su X, Shrestha N, Liu Y, Kennedy JD, Lyu L, Nogués-Bravo D, Rosindell J, Yang Y, Fjeldså J, Liu J, Schmid B, Fang J, Rahbek C, Wang Zet al., 2023,

    Diversification of flowering plants in space and time.

    , Nat Commun, Vol: 14

    The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.

  • Journal article
    Xu H, Wang H, Prentice IC, Harrison SPet al., 2023,

    Leaf carbon and nitrogen stoichiometric variation alongenvironmental gradients

    , Biogeosciences, Vol: 20, Pages: 4511-4525, ISSN: 1726-4170

    Leaf stoichiometric traits are central to ecosystem function and biogeochemical cycling, yet no accepted theory predicts their variation along environmental gradients. Using data in the China Plant Trait Database version 2, we aimed to characterize variation in leaf carbon and nitrogen per unit mass (Cmass, Nmass) and their ratio, and to test an eco-evolutionary optimality model for Nmass. Community-mean trait values were related to climate variables by multiple linear regression. Climatic optima and tolerances of major genera were estimated; Pagel’s λ was used to quantify phylogenetic controls, and Bayesian phylogenetic linear mixed models to assess the contributions of climate, species identity and phylogeny. Optimality-based predictions of community-mean Nmass were compared to observed values. All traits showed strong phylogenetic signals. Climate explained only 18 % of C : N ratio variation among species but 45 % among communities, highlighting the role of taxonomic replacement in mediating community-level responses. Geographic distributions of deciduous taxa separated primarily by moisture, evergreens by temperature. Cmass increased with irradiance, but decreased with moisture and temperature. Nmass declined with all three variables. C : N ratio variations were dominated by Nmass. The coefficients relating Nmass to the ratio of maximum carboxylation capacity at 25 °C (Vcmax25) and leaf mass per area (Ma) were influenced by leaf area index. The optimality model captured 68 % and 53 % of variation between communities for Vcmax25 and Ma respectively, and 30 % for Nmass. We conclude that stoichiometric variations along climate gradients are achieved largely by environmental selection among species and clades with different characteristic trait values. Variations in leaf C : N ratio are mainly determined by Nmass, and optimality-based modelling shows useful predictive ability for community-mean Nmass. These findings should help to improve the repres

  • Journal article
    Brazeau M, Castiello M, El Fassi El Fehri A, Hamilton L, Ivanov AO, Johanson Z, Friedman Met al., 2023,

    Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle

    , Nature, Vol: 623, Pages: 550-554, ISSN: 0028-0836

    The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty. Paired appendages are widely considered key innovations that allowed new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The last 150 years of debate has been shaped by two contentious theories: the ventrolateral fin-fold hypothesis and the archipterygium hypothesis. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although tantalizing developmental evidence has revived interest in this idea, it is apparently unsupported by fossil evidence. Here we present fossil evidence of a pharyngeal basis for the vertebrate shoulder girdle. We use CT scanning to reveal details of the braincase of Kolymaspis sibirica, a placoderm fish from the Early Devonian of Siberia that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our new evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes. The results revive a key aspect of the archipterygium hypothesis, but also reconciles it with the ventrolateral fin fold model.

  • Other
    Blackford KR, Kasoar M, Burton C, Burke E, Prentice IC, Voulgarakis Aet al., 2023,

    Supplementary material to "INFERNO-peat v1.0.0: A representation of northern high latitude peat fires in the JULES-INFERNO global fire model"

  • Journal article
    Mwima R, Hui T-YJ, Nanteza A, Burt A, Kayondo JKet al., 2023,

    Potential persistence mechanisms of the major Anopheles gambiae species complex malaria vectors in sub-Saharan Africa: a narrative review.

    , Malar J, Vol: 22

    The source of malaria vector populations that re-establish at the beginning of the rainy season is still unclear yet knowledge of mosquito behaviour is required to effectively institute control measures. Alternative hypotheses like aestivation, local refugia, migration between neighbouring sites, and long-distance migration (LDM) are stipulated to support mosquito persistence. This work assessed the malaria vector persistence dynamics and examined various studies done on vector survival  via these hypotheses; aestivation, local refugia, local or long-distance migration across sub-Saharan Africa, explored a range of methods used, ecological parameters and highlighted the knowledge trends and gaps. The results about a particular persistence mechanism that supports the re-establishment of Anopheles gambiae, Anopheles coluzzii or Anopheles arabiensis in sub-Saharan Africa were not conclusive given that each method used had its limitations. For example, the Mark-Release-Recapture (MRR) method whose challenge is a low recapture rate that affects its accuracy, and the use of time series analysis through field collections whose challenge is the uncertainty about whether not finding mosquitoes during the dry season is a weakness of the conventional sampling methods used or because of hidden shelters. This, therefore, calls for further investigations emphasizing the use of ecological experiments under controlled conditions in the laboratory or semi-field, and genetic approaches, as they are known to complement each other. This review, therefore, unveils and assesses the uncertainties that influence the different malaria vector persistence mechanisms and provides recommendations for future studies.

  • Journal article
    Mayfield MM, Lau JA, Tobias JA, Ives AR, Strauss SYet al., 2023,

    What Can Evolutionary History Tell Us about the Functioning of Ecological Communities? The ASN Presidential Debate

  • Journal article
    Cruz-Silva E, Harrison SP, Colin Prentice I, Marinova E, Bartlein PJ, Renssen H, Zhang Yet al., 2023,

    Pollen-based reconstructions of Holocene climate trends in the eastern Mediterranean region

    , Climate of the Past, Vol: 19, Pages: 2093-2108, ISSN: 1814-9324

    There has been considerable debate about the degree to which climate has driven societal changes in the eastern Mediterranean region, partly through reliance on a limited number of qualitative records of climate changes and partly reflecting the need to disentangle the joint impact of changes in different aspects of climate. Here, we use tolerance-weighted, weighted-averaging partial least squares to derive reconstructions of the mean temperature of the coldest month (MTCO), mean temperature of the warmest month (MTWA), growing degree days above a threshold of 0 C (GDD0), and plant-available moisture, which is represented by the ratio of modelled actual to equilibrium evapotranspiration (α) and corrected for past CO2 changes. This is done for 71 individual pollen records from the eastern Mediterranean region covering part or all of the interval from 12.3 ka to the present. We use these reconstructions to create regional composites that illustrate the long-term trends in each variable. We compare these composites with transient climate model simulations to explore potential causes of the observed trends. We show that the glacial-Holocene transition and the early part of the Holocene was characterised by conditions colder than the present. Rapid increases in temperature occurred between ca. 10.3 and 9.3 ka, considerably after the end of the Younger Dryas. Although the time series are characterised by centennial to millennial oscillations, the MTCO showed a gradual increase from 9 ka to the present, consistent with the expectation that winter temperatures were forced by orbitally induced increases in insolation during the Holocene. The MTWA also showed an increasing trend from 9 ka and reached a maximum of ca. 1.5 C greater than the present at ca. 4.5 and 5 ka, followed by a gradual decline towards present-day conditions. A delayed response to summer insolation changes is likely a reflection of the persistence of the Laurentide and Fennoscandian ice sheets; subse

  • Journal article
    Burton VJ, Baselga A, De Palma A, Phillips HRP, Mulder C, Eggleton P, Purvis Aet al., 2023,

    Effects of land use and soil properties on taxon richness and abundance of soil assemblages

    , European Journal of Soil Science, Vol: 74, ISSN: 1351-0754

    Land-use change and habitat degradation are among the biggest drivers of aboveground biodiversity worldwide but their effects on soil biodiversity are less well known, despite the importance of soil organisms in developing soil structure, nutrient cycling and water drainage. Combining a global compilation of biodiversity data from soil assemblages collated as part of the PREDICTS project with global data on soil characteristics, we modelled how taxon richness and total abundance of soil organisms have responded to land use. We also estimated the global Biodiversity Intactness Index (BII)—the average abundance and compositional similarity of taxa that remain in an area, compared to a minimally impacted baseline, for soil biodiversity. This is the first time the BII has been calculated for soil biodiversity. Relative to undisturbed vegetation, soil organism total abundance and taxon richness were reduced in all land uses except pasture. Soil properties mediated the response of soil biota, but not in a consistent way across land uses. The global soil BII in cropland is, on average, a third of that originally present. However, in grazed sites the decline is less severe. The BII of secondary vegetation depends on age, with sites with younger growth showing a lower BII than mature vegetation. We conclude that land-use change has reduced local soil biodiversity worldwide, and this further supports the proposition that soil biota should be considered explicitly when using global models to estimate the state of biodiversity.

  • Journal article
    Stewart K, Carmona CP, Clements C, Venditti C, Tobias JA, González-Suárez Met al., 2023,

    Functional diversity metrics can perform well with highly incomplete data sets

    , Methods in Ecology and Evolution, Vol: 14, Pages: 2856-2872

    Characterising changes in functional diversity at large spatial scales provides insight into the impact of human activity on ecosystem structure and function. However, the approach is often based on trait data sets that are incomplete and unrepresentative, with uncertain impacts on functional diversity estimates. To address this knowledge gap, we simulated random and biased removal of data from three empirical trait data sets: an avian data set (9579 species), a plant data set (2185 species) and a crocodilian data set (25 species). For these data sets, we assessed whether functional diversity metrics were robust to data incompleteness with and without using imputation to fill data gaps. We compared two metrics each calculated with two methods: functional richness (calculated with convex hulls and trait probabilities densities) and functional divergence (calculated with distance-based Rao and trait probability densities). Without imputation, estimates of functional diversity (richness and divergence) for birds and plants were robust when 20%–70% of species had missing data for four out of 11 and two out of six continuous traits, respectively, depending on the severity of bias and method used. However, when missing traits were imputed, functional diversity metrics consistently remained representative of the true value when 70% of bird species were missing data for four out of 11 traits and when 50% of plant species were missing data for two out of six traits. Trait probability densities and distance-based Rao were particularly robust to missingness and bias when combined with imputation. Convex hull-based estimations of functional richness were less reliable. When applied to a smaller data set (crocodilians, 25 species), all functional diversity metrics were much more sensitive to missing data. Expanding global morphometric data sets to represent more taxa and traits, and to quantify intraspecific variation, remains a priority. In the meantime, our results show

  • Journal article
    O'Gorman EJ, Zhao L, Kordas RL, Dudgeon S, Woodward Get al., 2023,

    Warming indirectly simplifies food webs through effects on apex predators

  • Journal article
    Devenish AJM, Schmitter P, Jellason NP, Esmail N, Abdi NM, Adanu SK, Adolph B, Al-Zubi M, Amali AA, Barron J, Chapman ASA, Chausson AM, Chibesa M, Davies J, Dugan E, Edwards GI, Egeru A, Gebrehiwot T, Griffiths GH, Haile A, Hunga HG, Igbine L, Jarju OM, Keya F, Khalifa M, Ledoux WA, Lejissa LT, Loupa P, Lwanga J, Mapedza ED, Marchant R, McLoud T, Mukuyu P, Musah LM, Mwanza M, Mwitwa J, Neina D, Newbold T, Njogo S, Robinson EJZ, Singini W, Umar BB, Wesonga F, Willcock S, Yang J, Tobias JAet al., 2023,

    One Hundred Priority Questions for the Development of Sustainable Food Systems in Sub-Saharan Africa

    , Land, Vol: 12

    Sub-Saharan Africa is facing an expected doubling of human population and tripling of food demand over the next quarter century, posing a range of severe environmental, political, and socio-economic challenges. In some cases, key Sustainable Development Goals (SDGs) are in direct conflict, raising difficult policy and funding decisions, particularly in relation to trade-offs between food production, social inequality, and ecosystem health. In this study, we used a horizon-scanning approach to identify 100 practical or research-focused questions that, if answered, would have the greatest positive impact on addressing these trade-offs and ensuring future productivity and resilience of food-production systems across sub-Saharan Africa. Through direct canvassing of opinions, we obtained 1339 questions from 331 experts based in 55 countries. We then used online voting and participatory workshops to produce a final list of 100 questions divided into 12 thematic sections spanning topics from gender inequality to technological adoption and climate change. Using data on the background of respondents, we show that perspectives and priorities can vary, but they are largely consistent across different professional and geographical contexts. We hope these questions provide a template for establishing new research directions and prioritising funding decisions in sub-Saharan Africa.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=562&limit=30&resgrpMemberPubs=true&respub-action=search.html Current Millis: 1708968486213 Current Time: Mon Feb 26 17:28:06 GMT 2024