Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Kenna D, Graystock P, Gill R, 2023,

    Toxic temperatures: bee behaviours exhibit divergent pesticide toxicity relationships with warming

    , Global Change Biology, ISSN: 1354-1013
  • Journal article
    Bloomfield K, van Hoolst R, Balzarolo M, Janssens IA, Vicca S, Ghent D, Prentice ICet al., 2023,

    Towards a general monitoring system for terrestrial primary production: a test spanning the European drought of 2018.

    , Remote Sensing, ISSN: 2072-4292
  • Journal article
    Dong N, Dechant B, Wang H, Wright IJ, Prentice ICet al., 2023,

    Global leaf-trait mapping based on optimality theory

    , Global Ecology and Biogeography, ISSN: 1466-822X
  • Journal article
    Flintham E, Savolainen V, Mullon C, 2023,

    Male harm offsets the demographic benefits of good genes

    , Proceedings of the National Academy of Sciences of USA, Vol: 120, Pages: 1-9, ISSN: 0027-8424

    Sexual conflict can arise when males evolve traits that improve their mating success but in doing so harm females. By reducing female fitness, male harm can diminish offspring production in a population and even drive extinction. Current theory on harm is based on the assumption that an individual’s phenotype is solely determined by its genotype. But the expression of most sexually selected traits is also influenced by variation in biological condition (condition-dependent expression), such that individuals in better condition can express more extreme phenotypes. Here, we developed demographically explicit models of sexual conflict evolution where individuals vary in their condition. Because condition-dependent expression readily evolves for traits underlying sexual conflict, we show that conflict is more intense in populations where individuals are in better condition. Such intensified conflict reduces mean fitness and can thus generate a negative association between condition and population size. The impact of condition on demography is especially likely to be detrimental when the genetic basis of condition coevolves with sexual conflict. This occurs because sexual selection favors alleles that improve condition (the so-called good genes effect), producing feedback between condition and sexual conflict that drives the evolution of intense male harm. Our results indicate that in presence of male harm, the good genes effect in fact easily becomes detrimental to populations.

  • Journal article
    Cantwell-Jones A, Larson K, Ward A, Bates OK, Cox T, Gibbons C, Richardson R, Al-Hayali AMR, Svedin J, Aronsson M, Brannlund F, Tylianakis JM, Johansson J, Gill RJet al., 2023,

    Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community

    , Functional Ecology, Vol: 37, Pages: 748-762, ISSN: 0269-8463

    Functional overlap among species (redundancy) is considered important in shaping competitive and mutualistic interactions that determine how communities respond to environmental change. Most studies view functional redundancy as static, yet traits within species—which ultimately shape functional redundancy—can vary over seasonal or spatial gradients. We therefore have limited understanding of how trait turnover within and between species could lead to changes in functional redundancy or how loss of traits could differentially impact mutualistic interactions depending on where and when the interactions occur in space and time. Using an Arctic bumblebee community as a case study, and 1277 individual measures from 14 species over three annual seasons, we quantified how inter- and intraspecific body-size turnover compared to species turnover with elevation and over the season. Coupling every individual and their trait with a plant visitation, we investigated how grouping individuals by a morphological trait or by species identity altered our assessment of network structure and how this differed in space and time. Finally, we tested how the sensitivity of the network in space and time differed when simulating extinction of nodes representing either morphological trait similarity or traditional species groups. This allowed us to explore the degree to which trait-based groups increase or decrease interaction redundancy relative to species-based nodes. We found that (i) groups of taxonomically and morphologically similar bees turn over in space and time independently from each other, with trait turnover being larger over the season; (ii) networks composed of nodes representing species versus morphologically similar bees were structured differently; and (iii) simulated loss of bee trait groups caused faster coextinction of bumblebee species and flowering plants than when bee taxonomic groups were lost. Crucially, the magnitude of these effects varied in spa

  • Journal article
    Qiao S, Harrison SP, Prentice IC, Wang Het al., 2023,

    Optimality-based modelling of wheat sowing dates globally

    , Agricultural Systems, Vol: 206, Pages: 1-11, ISSN: 0308-521X

    CONTEXTSowing dates are currently an essential input for crop models. However, in the future, the optimal sowing time will be affected by climate changes and human adaptations to these changes. A better understanding of what determines the choice of wheat type and sowing dates is required to be able to predict future crop yields reliably.OBJECTIVEThis study was conducted to understand how climate conditions affect the choice of wheat types and sowing dates globally.METHODSWe develop a model integrating optimality concepts for simulating gross primary production (GPP) with climate constraints on wheat phenology to predict sowing dates. We assume that wheat could be sown at any time with suitable climate conditions and farmers would select a sowing date that maximises yields. The model is run starting on every possible climatically suitable day, determined by climate constraints associated with low temperature and intense precipitation. The optimal sowing date is the day which gives the highest yield in each location. We evaluate the simulated optimal sowing dates with data on observed sowing dates created by merging census-based datasets and local agronomic information, then predict their changes under future climate scenarios to gain insight into the impacts of climate change.RESULTS AND CONCLUSIONSCold-season temperatures are the major determinant of sowing dates in the extra-tropics, whereas the seasonal cycle of monsoon rainfall is important in the tropics. Our model captures the timing of reported sowing dates, with differences of less than one month over much of the world; maximum errors of up to two months occur in tropical regions with large altitudinal gradients. Discrepancies between predictions and observations are larger in tropical regions than temperate and cold regions. Slight warming is shown to promote earlier sowing in wet areas but later in dry areas; larger warming leads to delayed sowing in most regions. These predictions arise due to the interac

  • Journal article
    Gumbs R, Gray C, Böhm M, Burfield I, Couchman O, Faith D, Forest F, Hoffmann M, Isaac N, Jetz W, Mace G, Mooers A, Safi K, Scott O, Steel M, Tucker C, Pearse W, Owen N, Rosindell Jet al., 2023,

    The EDGE2 protocol: advancing the prioritisation of Evolutionarily Distinct and Globally Endangered species for practical conservation action

    , PLoS Biology, Vol: 21, Pages: 1-22, ISSN: 1544-9173

    The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an “EDGE2” protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world’s mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.

  • Journal article
    Germain RR, Feng S, Buffan L, Carmona CP, Chen G, Graves GR, Tobias JA, Rahbek C, Lei F, Fjeldså J, Hosner PA, Gilbert MTP, Zhang G, Nogués-Bravo Det al., 2023,

    Changes in the functional diversity of modern bird species over the last million years.

    , Proc Natl Acad Sci U S A, Vol: 120, Pages: e2201945119-e2201945119

    Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.

  • Journal article
    Wyer C, Brian H, Cator L, 2023,

    Release from sexual selection leads to rapid genome-wide evolution in Aedes aegypti

    , Current Biology
  • Journal article
    Liu M, Shen Y, Gonzalez-Samperiz P, Gil-Romera G, ter Braak CJF, Prentice IC, Harrison SPet al., 2023,

    Holocene climates of the Iberian Penisula: pollen-based reconstructions of changes in the west-east gradient of temperature and moisture

    , Climate of the Past, ISSN: 1814-9324
  • Journal article
    Hong P, Li Z, Yang Q, Deng W, Xu Y, Tobias JAA, Wang Set al., 2023,

    Functional traits and environment jointly determine the spatial scaling of population stability in North American birds

    , ECOLOGY, ISSN: 0012-9658
  • Journal article
    Ransome E, Hobbs F, Jones S, Coleman CM, Harris ND, Woodward G, Bell T, Trew J, Kolarević S, Kračun-Kolarević M, Savolainen Vet al., 2023,

    Evaluating the transmission risk of SARS-CoV-2 from sewage pollution

    , Science of the Total Environment, Vol: 858, Pages: 1-8, ISSN: 0048-9697

    The presence of SARS-CoV-2 in untreated sewage has been confirmed in many countries but its incidence and infection risk in contaminated waters is poorly understood. The River Thames in the UK receives untreated sewage from 57 Combined Sewer Overflows (CSOs), with many discharging dozens of times per year. This study investigated if such discharges provide a pathway for environmental transmission of SARS-CoV-2. Samples of wastewater, surface water, and sediment collected close to six CSOs on the River Thames were assayed over eight months for SARS-CoV-2 RNA and infectious virus. Bivalves were also sampled as an indicator species of viral bioaccumulation. Sediment and water samples from the Danube and Sava rivers in Serbia, where raw sewage is also discharged in high volumes, were assayed as a positive control. No evidence of SARS-CoV-2 RNA or infectious virus was found in UK samples, in contrast to RNA positive samples from Serbia. Furthermore, this study shows that infectious SARS-CoV-2 inoculum is stable in Thames water and sediment for <3 days, while SARS-CoV-2 RNA is detectable for at least seven days. This indicates that dilution of wastewater likely limits environmental transmission, and that detection of viral RNA alone is not an indication of pathogen spillover.

  • Journal article
    Arce A, Cantwell-Jones A, Tansley M, Barnes I, Brace S, Mullin VE, Notton D, Ollerton J, Eatough E, Rhodes MW, Bian X, Hogan J, Hunter T, Jackson S, Whiffin A, Blagoderov V, Broad G, Judd S, Kokkini P, Livermore L, Dixit MK, Pearse WD, Gill Ret al., 2023,

    Signatures of increasing environmental stress in bumblebee wings over the past century: Insights from museum specimens

    , Journal of Animal Ecology, Vol: 92, Pages: 297-309, ISSN: 0021-8790

    1. Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species’ responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses.2. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress.3. We: i) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; ii) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or non-linear trend; iii) tested which annual climatic conditions correlated with increased FA in bumblebees.4. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a non-linear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. 5. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards impro

  • Journal article
    Mullin VE, Stephen W, Arce AN, Nash W, Raine C, Notton DG, Whiffin A, Blagderov V, Gharbi K, Hogan J, Hunter T, Irish N, Jackson S, Judd S, Watkins C, Haerty W, Ollerton J, Brace S, Gill RJ, Barnes Iet al., 2023,

    First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing

    , Methods in Ecology and Evolution, Vol: 14, Pages: 360-371, ISSN: 2041-210X

    1. Insect declines are a global issue with significant ecological and economic ramifications. Yet we have a poor understanding of the genomic impact these losses can have. Genome-wide data from historical specimens has the potential to provide baselines of population genetic measures to study population change, with natural history collections representing large repositories of such specimens. However, an initial challenge in conducting historical DNA data analyses, is to understand how molecular preservation varies between specimens.2. Here, we highlight how Next Generation Sequencing methods developed for studying archaeological samples can be applied to determine DNA preservation from only a single leg taken from entomological museum specimens, some of which are more than a century old. An analysis of genome-wide data from a set of 113 red-tailed bumblebee (Bombus lapidarius) specimens, from five British museum collections, was used to quantify DNA preservation over time. Additionally, to improve our analysis and further enable future research we generated a novel assembly of the red-tailed bumblebee genome. 3. Our approach shows that museum entomological specimens are comprised of short DNA fragments with mean lengths below 100 base pairs (BP), suggesting a rapid and large-scale post-mortem reduction in DNA fragment size. After this initial decline, however, we find a relatively consistent rate of DNA decay in our dataset, and estimate a mean reduction in fragment length of 1.9bp per decade. The proportion of quality filtered reads mapping to our assembled reference genome was around 50%, and decreased by 1.1 % per decade. 4. We demonstrate that historical insects have significant potential to act as sources of DNA to create valuable genetic baselines. The relatively consistent rate of DNA degradation, both across collections and through time, mean that population level analyses - for example for conservation or evolutionary studies - are entirely feasible, a

  • Journal article
    Westerband AC, Wright IJ, Maire V, Paillassa J, Prentice IC, Atkin OK, Bloomfield KJ, Cernusak LA, Dong N, Gleason SM, Guilherme Pereira C, Lambers H, Leishman MR, Malhi Y, Nolan RHet al., 2023,

    Coordination of photosynthetic traits across soil and climate gradients

    , Global Change Biology, Vol: 29, Pages: 856-873, ISSN: 1354-1013

    "Least-cost theory" posits that C3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of leaf internal to ambient CO2 , Ci :Ca ) during light-saturated photosynthesis, and at higher leaf N per area (Narea ) and higher carboxylation capacity (Vcmax 25 ) for a given rate of stomatal conductance to water vapour, gsw . These results would be indicative of plants having relatively higher water costs than nutrient costs. In general, our hypotheses were supported. Soil total phosphorus (P) concentration and (more weakly) soil pH exerted positive effects on the Narea -gsw and Vcmax 25 -gsw slopes, and negative effects on Ci :Ca . The P effect strengthened when the effect of climate was removed via partial regression. We observed similar trends with increasing soil cation exchange capacity and clay content, which affect soil nutrient availability, and found that soil properties explained similar amounts of variation in the focal traits as climate did. Although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the slope relationships and soil properties explained up to 30% of the variation in individual traits. Soils influenced photosynthetic traits as well as their coordination. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. Least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including

  • Journal article
    García FC, Clegg T, O'Neill DB, Warfield R, Pawar S, Yvon-Durocher Get al., 2023,

    The temperature dependence of microbial community respiration is amplified by changes in species interactions.

    , Nat Microbiol, Vol: 8, Pages: 272-283

    Respiratory release of CO2 by microorganisms is one of the main components of the global carbon cycle. However, there are large uncertainties regarding the effects of climate warming on the respiration of microbial communities, owing to a lack of mechanistic, empirically tested theory that incorporates dynamic species interactions. We present a general mathematical model which predicts that thermal sensitivity of microbial community respiration increases as species interactions change from competition to facilitation (for example, commensalism, cooperation and mutualism). This is because facilitation disproportionately increases positive feedback between the thermal sensitivities of species-level metabolic and biomass accumulation rates at warmer temperatures. We experimentally validate our theoretical predictions in a community of eight bacterial taxa and show that a shift from competition to facilitation, after a month of co-adaptation, caused a 60% increase in the thermal sensitivity of respiration relative to de novo assembled communities that had not co-adapted. We propose that rapid changes in species interactions can substantially change the temperature dependence of microbial community respiration, which should be accounted for in future climate-carbon cycle models.

  • Journal article
    Bloomfield KJ, Stocker BD, Keenan TF, Prentice ICet al., 2023,

    Environmental controls on the light use efficiency of terrestrial gross primary production

    , Global Change Biology, Vol: 29, Pages: 1037-1053, ISSN: 1354-1013

    Gross primary production (GPP) by terrestrial ecosystems is a key quantity in the global carbon cycle. The instantaneous controls of leaf-level photosynthesis are well established, but there is still no consensus on the mechanisms by which canopy-level GPP depends on spatial and temporal variation in the environment. The standard model of photosynthesis provides a robust mechanistic representation for C3 species; however, additional assumptions are required to “scale up” from leaf to canopy. As a consequence, competing models make inconsistent predictions about how GPP will respond to continuing environmental change. This problem is addressed here by means of an empirical analysis of the light use efficiency (LUE) of GPP inferred from eddy covariance carbon dioxide flux measurements, in situ measurements of photosynthetically active radiation (PAR), and remotely sensed estimates of the fraction of PAR (fAPAR) absorbed by the vegetation canopy. Focusing on LUE allows potential drivers of GPP to be separated from its overriding dependence on light. GPP data from over 100 sites, collated over 20 years and located in a range of biomes and climate zones, were extracted from the FLUXNET2015 database and combined with remotely sensed fAPAR data to estimate daily LUE. Daytime air temperature, vapor pressure deficit, diffuse fraction of solar radiation, and soil moisture were shown to be salient predictors of LUE in a generalized linear mixed-effects model. The same model design was fitted to site-based LUE estimates generated by 16 terrestrial ecosystem models. The published models showed wide variation in the shape, the strength, and even the sign of the environmental effects on modeled LUE. These findings highlight important model deficiencies and suggest a need to progress beyond simple “goodness of fit” comparisons of inferred and predicted carbon fluxes toward an approach focused on the functional responses of the underlying dependencies.

  • Journal article
    Qureshi A, Keen E, Brown G, Cator Let al., 2023,

    The size of larval rearing container modulates the effects of diet amount and larval density on larval development in Aedes aegypti

    , PLoS One, Vol: 18, Pages: 1-18, ISSN: 1932-6203

    Mass-rearing of mosquitoes under laboratory conditions is an important part of several new control techniques that rely on the release of males to control mosquito populations. While previous work has investigated the effect of larval density and diet amount on colony productivity, the role of the size of the container in which larval development takes place has been relatively ignored. We investigated the role of container size in shaping life history and how this varied with density and food availability in Aedes aegypti, an important disease vector and target of mass-rearing operations. For each treatment combination, immature development time and survival and adult body size and fecundity were measured, and then combined into a measure of productivity. We additionally investigated how larval aggregation behaviour varied with container size. Container size had important effects on life history traits and overall productivity. In particular, increasing container size intensified density and diet effects on immature development time. Productivity was also impacted by container size when larvae were reared at high densities (1.4 larva/ml). In these treatments, the productivity metric of large containers was estimated to be significantly lower than medium or small containers. Regardless of container size, larvae were more likely to be observed at the outer edges of containers, even when this led to extremely high localized densities. We discuss how container size and larval aggregation responses may alter the balance of energy input and output to shape development and productivity.

  • Journal article
    Schleuning M, Garcia D, Tobias JA, 2023,

    Animal functional traits: Towards a trait-based ecology for whole ecosystems

    , Functional Ecology, Vol: 37, Pages: 4-12, ISSN: 0269-8463
  • Journal article
    Wang H, Prentice IC, Wright IJ, warton DI, Qiao S, Xu X, Zhou J, Kikuzawa K, Stenseth NCet al., 2023,

    Leaf economics fundamentals explained by optimality principles

    , Science Advances, Vol: 9, ISSN: 2375-2548

    The life span of leaves increases with their mass per unit area (LMA). It is unclear why. Here, we show that this empirical generalization (the foundation of the worldwide leaf economics spectrum) is a consequence of natural selection, maximizing average net carbon gain over the leaf life cycle. Analyzing two large leaf trait datasets, we show that evergreen and deciduous species with diverse construction costs (assumed proportional to LMA) are selected by light, temperature, and growing-season length in different, but predictable, ways. We quantitatively explain the observed divergent latitudinal trends in evergreen and deciduous LMA and show how local distributions of LMA arise by selection under different environmental conditions acting on the species pool. These results illustrate how optimality principles can underpin a new theory for plant geography and terrestrial carbon dynamics.

  • Journal article
    Zhu Z, Wang H, Harrison SP, Prentice IC, Qiao S, Tan Set al., 2023,

    Optimality principles explaining divergent responses of alpine vegetation to environmental change

    , Global Change Biology, Vol: 29, Pages: 126-142, ISSN: 1354-1013

    Recent increases in vegetation greenness over much of the world reflect increasing CO2 globally and warming in cold areas. However, the strength of the response to both CO2 and warming in those areas appears to be declining for unclear reasons, contributing to large uncertainties in predicting how vegetation will respond to future global changes. Here, we investigated the changes of satellite-observed peak season absorbed photosynthetically active radiation (Fmax) on the Tibetan Plateau between 1982 and 2016. Although climate trends are similar across the Plateau, we identified robust divergent responses (a greening of 0.31 ± 0.14% year−1 in drier regions and a browning of 0.12 ± 0.08% year−1 in wetter regions). Using an eco-evolutionary optimality (EEO) concept of plant acclimation/adaptation, we propose a parsimonious modelling framework that quantitatively explains these changes in terms of water and energy limitations. Our model captured the variations in Fmax with a correlation coefficient (r) of .76 and a root mean squared error of .12 and predicted the divergent trends of greening (0.32 ± 0.19% year−1) and browning (0.07 ± 0.06% year−1). We also predicted the observed reduced sensitivities of Fmax to precipitation and temperature. The model allows us to explain these changes: Enhanced growing season cumulative radiation has opposite effects on water use and energy uptake. Increased precipitation has an overwhelmingly positive effect in drier regions, whereas warming reduces Fmax in wetter regions by increasing the cost of building and maintaining leaf area. Rising CO2 stimulates vegetation growth by enhancing water-use efficiency, but its effect on photosynthesis saturates. The large decrease in the sensitivity of vegetation to climate reflects a shift from water to energy limitation. Our study demonstrates the potential of EEO approaches to reveal the

  • Journal article
    Pawar S, 2023,

    Another step towards a unifying theory for ecosystems?

    , J Biosci, Vol: 48

    There are many ways in which methods and theories from physics can and have been applied to biology and ecology. The oldest example is the application of classical mechanics to animal movement (biomechanics), from tiny bacteria to massive whales. This application is intuitive: most people when observing an elephant lumber along would be happy to conclude that animals are machines in that they are so obviously made of moving parts designed to perform work (in its physical sense) under the constraints of elementary forces (predominantly gravity if you were an elephant!). Indeed, the potential for this link between physics and biology was foreseen by Aristotle around 2000 years before the mathematical bases of classical mechanics were founded (Nussbaum 1986).

  • Journal article
    Wang H, Harrison SP, Li M, Prentice IC, Qiao S, Wang R, Xu H, Mengoli G, Peng Y, Yang Yet al., 2022,

    The China plant trait database version 2

    , Scientific Data, Vol: 9, ISSN: 2052-4463

    Plant functional traits represent adaptive strategies to the environment, linked to biophysical and biogeochemical processes and ecosystem functioning. Compilations of trait data facilitate research in multiple fields from plant ecology through to land-surface modelling. Here we present version 2 of the China Plant Trait Database, which contains information on morphometric, physical, chemical, photosynthetic and hydraulic traits from 1529 unique species in 140 sites spanning a diversity of vegetation types. Version 2 has five improvements compared to the previous version: (1) new data from a 4-km elevation transect on the edge of Tibetan Plateau, including alpine vegetation types not sampled previously; (2) inclusion of traits related to hydraulic processes, including specific sapwood conductance, the area ratio of sapwood to leaf, wood density and turgor loss point; (3) inclusion of information on soil properties to complement the existing data on climate and vegetation (4) assessments and flagging the reliability of individual trait measurements; and (5) inclusion of standardized templates for systematical field sampling and measurements.

  • Journal article
    Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Zanne AE, Chave J, Wright SJ, Sheremetiev SN, Jactel H, Baraloto C, Cerabolini BEL, Pierce S, Shipley B, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD, Amiaud B, Atkin OK, Bahn M, Baldocchi D, Beckmann M, Blonder B, Bond W, Bond-Lamberty B, Brown K, Burrascano S, Byun C, Campetella G, Cavender-Bares J, Chapin FS, Choat B, Coomes DA, Cornwell WK, Craine J, Craven D, Dainese M, de Araujo AC, de Vries FT, Domingues TF, Enquist BJ, Fagúndez J, Fang J, Fernández-Méndez F, Fernandez-Piedade MT, Ford H, Forey E, Freschet GT, Gachet S, Gallagher R, Green W, Guerin GR, Gutiérrez AG, Harrison SP, Hattingh WN, He T, Hickler T, Higgins SI, Higuchi P, Ilic J, Jackson RB, Jalili A, Jansen S, Koike F, König C, Kraft N, Kramer K, Kreft H, Kühn I, Kurokawa H, Lamb EG, Laughlin DC, Leishman M, Lewis S, Louault F, Malhado ACM, Manning P, Meir P, Mencuccini M, Messier J, Miller R, Minden V, Molofsky J, Montgomery R, Montserrat-Martí G, Moretti M, Müller S, Niinemets Ü, Ogaya R, Öllerer K, Onipchenko V, Onoda Y, Ozinga WA, Pausas JG, Peco B, Penuelas J, Pillar VD, Pladevall C, Römermann C, Sack L, Salinas N, Sandel B, Sardans J, Schamp B, Scherer-Lorenzen M, Schulze E-D, Schweingruber F, Shiodera S, Sosinski Ê, Soudzilovskaia N, Spasojevic MJ, Swaine E, Swenson N, Tautenhahn S, Thompson K, Totte A, Urrutia-Jalabert R, Valladares F, van Bodegom P, Vasseur F, Verheyen K, Vile D, Violle C, von Holle B, Weigelt P, Weiher E, Wiemann MC, Williams M, Wright J, Zotz Get al., 2022,

    The global spectrum of plant form and function: enhanced species-level trait dataset

    , Scientific Data, Vol: 9, Pages: 1-18, ISSN: 2052-4463

    Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.

  • Journal article
    Buehne HST, Tobias JAA, Durant SMM, Pettorelli Net al., 2022,

    Indirect interactions between climate and cropland distribution shape fire size in West African grasslands

    , Landscape Ecology, Vol: 38, Pages: 1-16, ISSN: 0921-2973

    ContextClimate and land use changes often interact, yet our ability to predict their combined effects on biodiversity is currently limited. In particular, the combined effects of climate and land use on key ecosystem dynamics, such as disturbance regimes, that shape biodiversity across large spatial scales, are poorly understood.ObjectivesWe assess how indirect climate–land use interactions influence disturbance regimes by examining the mechanistic pathways by which climate and proximity to cropland interact to shape fire size in a West African grassland ecosystem, the W-Arly-Pendjari transboundary protected area complex.MethodsWe use remotely sensed indicators of burned area, rainfall, cropland distribution, and vegetation dynamics to test two spatially explicit hypotheses about the interaction between climate and land use effects on fire dynamics.ResultsWe demonstrate that in areas where wet season grass production (which is driven by rainfall) is higher, fires are larger, but that this relationship depends on the distance to cropland. Close to cropland, environmental drivers of fire size (wet season grass production, and progressive loss of fire fuel during the fire season) have little effect on fire size, as fuel breaks induced by cropland limit fire size.

  • Journal article
    Geci R, Willis K, Burt A, 2022,

    Gene drive designs for efficient and localisable population suppression using Y-linked editors

    , PLOS GENETICS, Vol: 18, ISSN: 1553-7404
  • Journal article
    Smith T, Mombrikotb S, Ransome E, Kontopoulos D, Pawar S, Bell Tet al., 2022,

    Latent functional diversity may accelerate microbial community responses to temperature fluctuations

    , eLife, Vol: 11, Pages: 1-22, ISSN: 2050-084X

    How complex microbial communities respond to climatic fluctuations remains an open question. Due to their relatively short generation times and high functional diversity, microbial populations harbor great potential to respond as a community through a combination of strain-level phenotypic plasticity, adaptation, and species sorting. However, the relative importance of these mechanisms remains unclear. We conducted a laboratory experiment to investigate the degree to which bacterial communities can respond to changes in environmental temperature through a combination of phenotypic plasticity and species sorting alone. We grew replicate soil communities from a single location at six temperatures between 4°C and 50°C. We found that phylogenetically and functionally distinct communities emerge at each of these temperatures, with K-strategist taxa favored under cooler conditions and r-strategist taxa under warmer conditions. We show that this dynamic emergence of distinct communities across a wide range of temperatures (in essence, community-level adaptation) is driven by the resuscitation of latent functional diversity: the parent community harbors multiple strains pre-adapted to different temperatures that are able to ‘switch on’ at their preferred temperature without immigration or adaptation. Our findings suggest that microbial community function in nature is likely to respond rapidly to climatic temperature fluctuations through shifts in species composition by resuscitation of latent functional diversity.

  • Journal article
    Simpson EG, Fraser I, Woolf H, Pearse WDet al., 2022,

    Variation in near-surface soil temperature drives plant assemblage insurance potential

    <jats:title>Abstract</jats:title><jats:p><jats:list list-type="order"><jats:list-item><jats:p>Studying how assemblages vary across environmental gradients provides a baseline for how assemblages may respond to climate change. Per the biological insurance hypothesis, assemblages with more variation in functional diversity will maintain ecosystem functions when species are lost. In complement, environmental heterogeneity supports landscape-scale ecosystem functionality (<jats:italic>i</jats:italic>.<jats:italic>e</jats:italic>. spatial insurance), when that variation includes environments with more abundant resources.</jats:p></jats:list-item><jats:list-item><jats:p>We use the relationship between vascular plant functional diversity and microenvironment to identify where assemblages are most likely to maintain functionality in a mountainous fieldsite in northeastern Utah, USA. We assessed how life history strategies and information about phylogenetic differences affect these diversity-environment relationships.</jats:p></jats:list-item><jats:list-item><jats:p>We found less functionally dispersed assemblages, that were shorter and more resource-conservative on hotter, more variable, south-facing slopes. In contrast, we found more functionally dispersed assemblages, that were taller and more resource-acquisitive on cooler, less variable, north-facing slopes. Herbaceous and woody perennials drove these trends. Additionally, including information about phylogenetic differences in a dispersion metric indicated that phylogeny accounts for traits we did not measure.</jats:p></jats:list-item><jats:list-item><jats:p><jats:italic>Synthesis</jats:italic>. At our fieldsite, soil temperature acts as an environmental filter across aspect. If soil temperature increases and becomes more variable, the function of north- vs. south-fac

  • Journal article
    Ali JR, Blonder BW, Pigot AL, Tobias JAet al., 2022,

    Bird extinctions threaten to cause disproportionate reductions of functional diversity and uniqueness

    , FUNCTIONAL ECOLOGY, Vol: 37, Pages: 162-175, ISSN: 0269-8463
  • Journal article
    Keller A, Ankenbrand MJ, Bruelheide H, Dekeyzer S, Enquist BJ, Erfanian MB, Falster DS, Gallagher R, Hammock J, Kattge J, Leonhardt SD, Madin JS, Maitner B, Neyret M, Onstein RE, Pearse WD, Poelen JH, Salguero-Gomez R, Schneider FD, Toth AB, Penone Cet al., 2022,

    Ten (mostly) simple rules to future-proof trait data in ecological and evolutionary sciences


This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=562&limit=30&resgrpMemberPubs=true&respub-action=search.html Current Millis: 1680025368071 Current Time: Tue Mar 28 18:42:48 BST 2023