Green infrastructures interrelation with water-energy-waste nexus.

Working with our successful research call applicants Dr Koen van Dam, Dr Miao Guo and Dr Chris Mazur theme 2 is conducting a feasibility Study into green infrastructures interrelation with water-energy-waste nexus.

Background: With rapid urbanisation it becomes essential to plan effective use of land and other resources to support sustainable and resilient development. Green infrastructure plays a vital role in managing water, air quality as well as quality of life. However, such bio-physical systems are complex, spanning from plant-land-climate interaction to their interdependency with built environment (e.g. energy-water-waste infrastructure). Decision-support is needed to understand their impact on social systems and other physical infrastructure. Our existing framework includes an agent-based simulation modelof urban systems to test different socio-demographic scenarios generating demands for infrastructure services (e.g. energy, water), and resource technology network optimisation to achieve the trade-off between cost-optimal solutions, environmental targets and Sustainable Development Goals, but not yet covers bio-physical systems.

Objectives: The aim of this project is to see if it is feasible to include bio-physical systems (e.g. green infrastructure) interconnected with environmental variables into a systems engineering approach and model this within a socio-technical framework. Building on ongoing research at Imperial on, we aim to extend the model and test a case study in China’s Jingjinji Capital Economic Zone (one of 10 mega regions). This case study will examine the interdependency of these green infrastructure with energy-water-waste nexus and the potential of such infrastructure to clean contaminated land and play a role in managing flooding, leading to more resilient cities.

Potential industry impact: Decision support for design and evaluation of solutions under range of scenarios, which will be tested with our industry partners Turenscape on design as well as Resilience Brokers Ltd which focuses on city resilience and green growth transformation across 200 city regions. Through collaboration we demonstrate the real-world feasibility and cross-country learning.

Outputs presented at our Showcase event