Collage of published research papers

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Freemont P, 2019,

    Synthetic biology industry - Data-driven design is creating new opportunities in biotechnology.

    , Emerging Topics in Life Sciences, Vol: 3, Pages: 651-657, ISSN: 2397-8554

    Synthetic biology is a rapidly emerging interdisciplinary research field that is primarily built upon foundational advances in molecular biology combined with engineering design. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies. This has spurned a rapid growth in start-up companies and the new synthetic biology industry is growing rapidly, with start-up companies receiving ~$6.1B investment since 2015 and a global synthetic biology market value estimated to be $14B by 2026. Many of the new start-upscan be grouped within a multi-layer ‘technology stack’. The ‘stack’ comprises a number of technology layers which together can be applied to a diversity of new biotechnology applications like consumer biotechnology products and living therapies. The ‘stack’ also enables new commercial opportunities and value chains similar to the software design and manufacturing revolution of the 20th century. However, synthetic biology industry is at a crucial point, as it now requires recognisable commercial successes in order for the industry to expand and scale, in terms of investment and companies. However, such expansion may directly challenge the ethos of synthetic biology, in terms of open technology sharing and democratisation, which could by accident lead to multi-national corporations and technology monopolies similar to the existing biotechnology/biopharma industry.

  • Conference paper
    Han Y, Lauteslager T, Lande TS, Constandinou TGet al., 2019,

    UWB radar for non-contact heart rate variability monitoring and mental state classification.

    , Annual Meeting of the IEEE Engineering in Medicine and Biology Society, Pages: 6578-6582, ISSN: 1557-170X

    Heart rate variability (HRV), as measured by ultra-wideband (UWB) radar, enables contactless monitoring of physiological functioning in the human body. In the current study, we verified the reliability of HRV extraction from radar data, under limited transmitter power. In addition, we conducted a feasibility study of mental state classification from HRV data, measured using radar. Specifically, arctangent demodulation with calibration and low rank approximation have been used for radar signal pre-processing. An adaptive continuous wavelet filter and moving average filter were utilized for HRV extraction. For the mental state classification task, performance of support vector machine, k-nearest neighbors and random forest classifiers have been compared. The developed system has been validated on human participants, with 10 participants for HRV extraction, and three participants for the proof-of-concept mental state classification study. The results of HRV extraction demonstrate the reliability of time-domain parameter extraction from radar data. However, frequency-domain HRV parameters proved to be unreliable under low SNR. The best average overall mental state classification accuracy achieved was 82.34%, which has important implications for the feasibility of mental health monitoring using UWB radar.

  • Journal article
    Lauteslager T, Tommer M, Lande TS, Constandinou TGet al., 2019,

    Coherent UWB radar-on-chip for in-body measurement of cardiovascular dynamics

    , IEEE Transactions on Biomedical Circuits and Systems, Vol: 13, Pages: 814-824, ISSN: 1932-4545

    Coherent ultra-wideband (UWB) radar-on-chip technology shows great promise for developing portable and low-cost medical imaging and monitoring devices. Particularly monitoring the mechanical functioning of the cardiovascular system is of interest, due to the ability of radar systems to track sub-mm motion inside the body at a high speed. For imaging applications, UWB radar systems are required, but there are still significant challenges with in-body sensing using low-power microwave equipment and wideband signals. Recently it was shown for the first time, on a single subject, that the arterial pulse wave can be measured at various locations in the body, using coherent UWB radar-on-chip technology. The current work provides more substantial evidence, in the form of new measurements and improved methods, to demonstrate that cardiovascular dynamics can be measured using radar-on-chip. Results across four participants were found to be robust and repeatable. Cardiovascular signals were recorded using radar-on-chip systems and electrocardiography (ECG). Through ECG-aligned averaging, the arterial pulse wave could be measured at a number of locations in the body. Pulse arrival time could be determined with high precision, and blood pressure pulse wave propagation through different arteries was demonstrated. In addition, cardiac dynamics were measured from the chest. This work serves as a first step in developing a portable and low-cost device for long-term monitoring of the cardiovascular system, and provides the fundamentals necessary for developing UWB radar-on-chip imaging systems.

  • Journal article
    Gorgoraptis N, Zaw-Linn J, Feeney C, Tenorio-Jimenez C, Niemi M, Malik A, Ham T, Goldstone AP, Sharp DJet al., 2019,

    Cognitive impairment and health- related quality of life following traumatic brain injury

    , Journal of Alzheimer's Disease, Vol: 44, Pages: 321-331, ISSN: 1387-2877

    BACKGROUNDCognitive impairment is a common and disabling consequence of traumatic brain injury (TBI) but its impact on health-related quality of life is not well understood.OBJECTIVETo investigate the relationship between cognitive impairment and health-related quality of life (HRQoL) after TBI.METHODSRetrospective, cross-sectional study of a specialist TBI outpatient clinic patient sample. Outcome measures: Addenbrooke's Cognitive Examination Tool - Revised (ACE-R), and SF-36 quality of life, Beck Depression Inventory II (BDI-II), Pittsburgh Sleep Quality Index (PSQI) and Epworth Sleepiness Scale (ESS) questionnaires.RESULTS240 adults were assessed: n = 172 (71.7% ) moderate-severe, 41 (23.8% ) mild, 27 (11.3% ) symptomatic TBI, 174 (72.5% ) male, median age (range): 44 (22-91) years. TBI patients reported poorer scores on all domains of SF-36 compared to age-matched UK normative data. Cognitively impaired patients reported poorer HRQoL on the physical, social role and emotional role functioning, and mental health domains. Cognitive impairment predicted poorer HRQoL on the social and emotional role functioning domains, independently of depressive symptoms, sleep disturbance, daytime sleepiness and TBI severity. Mediation analysis revealed that the effect of depressive symptoms on the emotional role functioning domain of HRQoL was partially mediated by cognitive dysfunction.CONCLUSIONCognitive impairment is associated with worse health-related quality of life after TBI and partially mediates the effect of depressive symptoms on emotional role functioning.

  • Conference paper
    Ahmadi N, Cavuto ML, Feng P, Leene LB, Maslik M, Mazza F, Savolainen O, Szostak KM, Bouganis C-S, Ekanayake J, Jackson A, Constandinou TGet al., 2019,

    Towards a distributed, chronically-implantable neural interface

    , 9th IEEE/EMBS International Conference on Neural Engineering (NER), Publisher: IEEE, Pages: 719-724, ISSN: 1948-3546

    We present a platform technology encompassing a family of innovations that together aim to tackle key challenges with existing implantable brain machine interfaces. The ENGINI (Empowering Next Generation Implantable Neural Interfaces) platform utilizes a 3-tier network (external processor, cranial transponder, intracortical probes) to inductively couple power to, and communicate data from, a distributed array of freely-floating mm-scale probes. Novel features integrated into each probe include: (1) an array of niobium microwires for observing local field potentials (LFPs) along the cortical column; (2) ultra-low power instrumentation for signal acquisition and data reduction; (3) an autonomous, self-calibrating wireless transceiver for receiving power and transmitting data; and (4) a hermetically-sealed micropackage suitable for chronic use. We are additionally engineering a surgical tool, to facilitate manual and robot-assisted insertion, within a streamlined neurosurgical workflow. Ongoing work is focused on system integration and preclinical testing.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1198&limit=5&page=13&respub-action=search.html Current Millis: 1715913422526 Current Time: Fri May 17 03:37:02 BST 2024

Awards

  • Finalist: Best Paper - IEEE Transactions on Mechatronics (awarded June 2021)

  • Finalist: IEEE Transactions on Mechatronics; 1 of 5 finalists for Best Paper in Journal

  • Winner: UK Institute of Mechanical Engineers (IMECHE) Healthcare Technologies Early Career Award (awarded June 2021): Awarded to Maria Lima (UKDRI CR&T PhD candidate)

  • Winner: Sony Start-up Acceleration Program (awarded May 2021): Spinout company Serg Tech awarded (1 of 4 companies in all of Europe) a place in Sony corporation start-up boot camp

  • “An Extended Complementary Filter for Full-Body MARG Orientation Estimation” (CR&T authors: S Wilson, R Vaidyanathan)