Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Hwang K-J, Nakamura R, Eastwood JP, Fuselier SA, Hasegawa H, Nakamura T, Lavraud B, Dokgo K, Turner DL, Ergun RE, Reiff PHet al., 2023,

    Cross-scale processes of magnetic reconnection

    , Space Science Reviews, Vol: 219, ISSN: 0038-6308

    Various physical processes in association with magnetic reconnection occur over multiple scales from the microscopic to macroscopic scale lengths. This paper reviews multi-scale and cross-scale aspects of magnetic reconnection revealed in the near-Earth space beyond the general global-scale features and magnetospheric circulation organized by the Dungey Cycle. Significant and novel advancements recently reported, in particular, since the launch of the Magnetospheric Multi-scale mission (MMS), are highlighted being categorized into different locations with different magnetic topologies. These potentially paradigm-shifting findings include shock and foreshock transient driven reconnection, magnetosheath turbulent reconnection, flow shear driven reconnection, multiple X-line structures generated in the dayside/flankside/nightside magnetospheric current sheets, development and evolution of reconnection-driven structures such as flux transfer events, flux ropes, and dipolarization fronts, and their interactions with ambient plasmas. The paper emphasizes key aspects of kinetic processes leading to multi-scale structures and bringing large-scale impacts of magnetic reconnection as discovered in the geospace environment. These key features can be relevant and applicable to understanding other heliospheric and astrophysical systems.

  • Journal article
    Klein KG, Spence H, Alexandrova O, Argall M, Arzamasskiy L, Bookbinder J, Broeren T, Caprioli D, Case A, Chandran B, Chen L-J, Dors I, Eastwood J, Forsyth C, Galvin A, Genot V, Halekas J, Hesse M, Hine B, Horbury T, Jian L, Kasper J, Kretzschmar M, Kunz M, Lavraud B, Le Contel O, Mallet A, Maruca B, Matthaeus W, Niehof J, OBrien H, Owen C, Retinò A, Reynolds C, Roberts O, Schekochihin A, Skoug R, Smith C, Smith S, Steinberg J, Stevens M, Szabo A, TenBarge J, Torbert R, Vasquez B, Verscharen D, Whittlesey P, Wickizer B, Zank G, Zweibel Eet al., 2023,

    HelioSwarm: a multipoint, multiscale mission to characterize turbulence

    , Space Science Reviews, Vol: 219, ISSN: 0038-6308

    HelioSwarm (HS) is a NASA Medium-Class Explorer mission of the Heliophysics Division designed to explore the dynamic three-dimensional mechanisms controlling the physics of plasma turbulence, a ubiquitous process occurring in the heliosphere and in plasmas throughout the universe. This will be accomplished by making simultaneous measurements at nine spacecraft with separations spanning magnetohydrodynamic and sub-ion spatial scales in a variety of near-Earth plasmas. In this paper, we describe the scientific background for the HS investigation, the mission goals and objectives, the observatory reference trajectory and instrumentation implementation before the start of Phase B. Through multipoint, multiscale measurements, HS promises to reveal how energy is transferred across scales and boundaries in plasmas throughout the universe.

  • Journal article
    Delabre I, Lyons-White J, Melot C, Veggeberg EI, Alexander A, Schleper MCC, Ewers RMM, Knight ATTet al., 2023,

    Should I stay or should I go? Understanding stakeholder dis/engagement for deforestation-free palm oil

    , Business Strategy and the Environment, Vol: 32, Pages: 5128-5145, ISSN: 0964-4733

    Addressing tropical deforestation in the palm oil sector involves a diverse range of stakeholders who engage or disengage with each other. Palm oil global value chain (GVC) firms (plantation companies, traders and processors, and consumer goods manufacturers and retailers), as well as nongovernmental organisations, financial institutions, consultancies and certification bodies, pursue their respective organisations' agendas through engagement practices, including through coalitions, in a palm oil sustainability network (POSN). Building on interviews with different stakeholder groups, this qualitative study characterises and critically analyses ‘stakeholder engagement’ by examining (1) the priority targets for engagement among different POSN stakeholders, (2) how mechanisms and tools are used in POSN stakeholder engagement or disengagement for addressing deforestation, and (3) the implications of stakeholder engagement or disengagement for addressing deforestation. Engagement and disengagement practices are shaped by and reshape GVC governance, with powerful stakeholders emerging as knowledge brokers and norm setters, raising important challenges for how deforestation is addressed.

  • Journal article
    Peng Y, Prentice IC, Bloomfield KJ, Campioli M, Guo Z, Sun Y, Tian D, Wang X, Vicca S, Stocker BDet al., 2023,

    Global terrestrial nitrogen uptake and nitrogen use efficiency

    , Journal of Ecology, Vol: 111, Pages: 2676-2693, ISSN: 0022-0477

    1. Plant biomass production (BP), nitrogen uptake (Nup) and their ratio, nitrogen use efficiency (NUE), must be quantified to understand how nitrogen (N) cycling constrains terrestrial carbon (C) uptake. But the controls of key plant processes determining Nup and NUE, including BP, C and N allocation, tissue C:N ratios and N resorption efficiency (NRE), remain poorly known. 2. We compiled measurements from 804 forest and grassland sites and derived regression models for each of these processes with growth temperature, vapour pressure deficit, stand age, soil C:N ratio, fAPAR (remotely sensed fraction of photosynthetically active radiation absorbed by green vegetation) and growing-season average daily incident photosynthetic photon flux density (gPPFD) (effectively the seasonal concentration of light availability, which increases polewards) as predictors. An empirical model for leaf N was based on optimal photosynthetic capacity (a function of gPPFD and climate) and observed leaf mass-per-area. The models were used to produce global maps of Nup and NUE. 3. Global BP was estimated as 72 Pg C/yr; Nup as 950 Tg N/yr; and NUE as 76 gC/gN. Forest BP was found to increase with growth temperature and fAPAR and to decrease with stand age, soil C:N ratio and gPPFD. Forest NUE is controlled primarily by climate through its effect on C allocation – especially to leaves, being richer in N than other tissues. NUE is greater in colder climates, where N is less readily available, because belowground allocation is increased. NUE is also greater in drier climates because leaf allocation is reduced. NRE is enhanced (further promoting NUE) in both cold and dry climates. 4. These findings can provide observationally based benchmarks for model representations of C–N cycle coupling. State-of-the-art vegetation models in the TRENDY ensemble showed variable performance against these benchmarks, and models including coupled C–N cycling produced relatively poor simulations o

  • Journal article
    Kumar SS, Hartner A-M, Chandran A, Gaythorpe KAM, Li Xet al., 2023,

    Evaluating effective measles vaccine coverage in the Malaysian population accounting for between-dose correlation and vaccine efficacy.

    , BMC Public Health, Vol: 23

    BACKGROUND: Malaysia introduced the two dose measles-mumps-rubella (MMR) vaccine in 2004 as part of its measles elimination strategy. However, despite high historical coverage of MCV1 and MCV2, Malaysia continues to report high measles incidence. This study suggests a novel indicator for investigating population immunity against measles in the Malaysian population. METHODS: We define effective vaccine coverage (EVC) of measles as the proportion of a population vaccinated with measles-containing vaccine (MCV) and effectively protected against measles infection. A quantitative evaluation of EVC throughout the life course of Malaysian birth cohorts was conducted accounting for both vaccine efficacy (VE) and between-dose correlation (BdC). Measles vaccination coverage was sourced from WHO-UNICEF estimates of Malaysia's routine immunisation coverage and supplementary immunisation activities (SIAs). United Nations World population estimates and projections (UNWPP) provided birth cohort sizes stratified by age and year. A step wise joint Bernoulli distribution was used to proportionate the Malaysian population born between 1982, the first year of Malaysia's measles vaccination programme, and 2021, into individuals who received zero dose, one dose and multiple doses of MCV. VE estimates by age and doses received are then adopted to derive EVC. A sensitivity analysis was conducted using 1000 random combinations of BdC and VE parameters. RESULTS: This study suggests that no birth cohort in the Malaysian population has achieved > 95% population immunity (EVC) conferred through measles vaccination since the measles immunisation programme began in Malaysia. CONCLUSION: The persistence of measles in Malaysia is due to pockets of insufficient vaccination coverage against measles in the population. Monitoring BdC through immunisation surveillance systems may allow for the identification of susceptible subpopulations (primarily zero-dose MCV individuals) and increas

  • Journal article
    Eglinton TI, Graven HD, Raymond PA, Trumbore SEet al., 2023,

    A special issue preface: radiocarbon in the Anthropocene

    , Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 381, ISSN: 1364-503X

    The Anthropocene is defined by marked acceleration in human-induced perturbations to the Earth system. Anthropogenic emissions of CO2 and other greenhouse gases to the atmosphere and attendant changes to the global carbon cycle are among the most profound and pervasive of these perturbations. Determining the magnitude, nature and pace of these carbon cycle changes is crucial for understanding the future climate that ecosystems and humanity will experience and need to respond to. This special issue illustrates the value of radiocarbon as a tool to shed important light on the nature, magnitude and pace of carbon cycle change. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

  • Journal article
    Eglinton TI, Graven HD, Raymond PA, Trumbore SE, Aluwihare L, Bard E, Basu S, Friedlingstein P, Hammer S, Lester J, Sanderman J, Schuur EAG, Sierra CA, Synal H-A, Turnbull JC, Wacker Let al., 2023,

    Making the case for an International Decade of Radiocarbon

    , Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 381, ISSN: 1364-503X

    Radiocarbon (14C) is a critical tool for understanding the global carbon cycle. During the Anthropocene, two new processes influenced 14C in atmospheric, land and ocean carbon reservoirs. First, 14C-free carbon derived from fossil fuel burning has diluted 14C, at rates that have accelerated with time. Second, 'bomb' 14C produced by atmospheric nuclear weapon tests in the mid-twentieth century provided a global isotope tracer that is used to constrain rates of air-sea gas exchange, carbon turnover, large-scale atmospheric and ocean transport, and other key C cycle processes. As we write, the 14C/12C ratio of atmospheric CO2 is dropping below pre-industrial levels, and the rate of decline in the future will depend on global fossil fuel use and net exchange of bomb 14C between the atmosphere, ocean and land. This milestone coincides with a rapid increase in 14C measurement capacity worldwide. Leveraging future 14C measurements to understand processes and test models requires coordinated international effort-a 'decade of radiocarbon' with multiple goals: (i) filling observational gaps using archives, (ii) building and sustaining observation networks to increase measurement density across carbon reservoirs, (iii) developing databases, synthesis and modelling tools and (iv) establishing metrics for identifying and verifying changes in carbon sources and sinks. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

  • Journal article
    Xu H, Wang H, Prentice IC, Harrison SPet al., 2023,

    Leaf carbon and nitrogen stoichiometric variation alongenvironmental gradients

    , Biogeosciences, Vol: 20, Pages: 4511-4525, ISSN: 1726-4170

    Leaf stoichiometric traits are central to ecosystem function and biogeochemical cycling, yet no accepted theory predicts their variation along environmental gradients. Using data in the China Plant Trait Database version 2, we aimed to characterize variation in leaf carbon and nitrogen per unit mass (Cmass, Nmass) and their ratio, and to test an eco-evolutionary optimality model for Nmass. Community-mean trait values were related to climate variables by multiple linear regression. Climatic optima and tolerances of major genera were estimated; Pagel’s λ was used to quantify phylogenetic controls, and Bayesian phylogenetic linear mixed models to assess the contributions of climate, species identity and phylogeny. Optimality-based predictions of community-mean Nmass were compared to observed values. All traits showed strong phylogenetic signals. Climate explained only 18 % of C : N ratio variation among species but 45 % among communities, highlighting the role of taxonomic replacement in mediating community-level responses. Geographic distributions of deciduous taxa separated primarily by moisture, evergreens by temperature. Cmass increased with irradiance, but decreased with moisture and temperature. Nmass declined with all three variables. C : N ratio variations were dominated by Nmass. The coefficients relating Nmass to the ratio of maximum carboxylation capacity at 25 °C (Vcmax25) and leaf mass per area (Ma) were influenced by leaf area index. The optimality model captured 68 % and 53 % of variation between communities for Vcmax25 and Ma respectively, and 30 % for Nmass. We conclude that stoichiometric variations along climate gradients are achieved largely by environmental selection among species and clades with different characteristic trait values. Variations in leaf C : N ratio are mainly determined by Nmass, and optimality-based modelling shows useful predictive ability for community-mean Nmass. These findings should help to improve the repres

  • Journal article
    Richards FD, Coulson SL, Hoggard MJ, Austermann J, Dyer B, Mitrovica JXet al., 2023,

    Geodynamically corrected Pliocene shoreline elevations in Australia consistent with mid-range projections of Antarctic ice loss

    , Science Advances, Vol: 9, ISSN: 2375-2548

    The Mid-Pliocene represents the most recent interval in Earth history with climatic conditions similar to those expected in the coming decades. Mid-Pliocene sea level estimates therefore provide important constraints on projections of future ice sheet behavior and sea level change but differ by tens of meters due to local distortion of paleoshorelines caused by mantle dynamics. We combine an Australian sea level marker compilation with geodynamic simulations and probabilistic inversions to quantify and remove these post-Pliocene vertical motions at continental scale. Dynamic topography accounts for most of the observed sea level marker deflection, and correcting for this effect and glacial isostatic adjustment yields a Mid-Pliocene global mean sea level of +16.0 (+10.4 to +21.5) m (50th/16th to 84th percentiles). Recalibration of recent high-end sea level projections using this revised estimate implies a more stable Antarctic Ice Sheet under future warming scenarios, consistent with midrange forecasts of sea level rise that do not incorporate a marine ice cliff instability.

  • Journal article
    Huang WTK, Masselot P, Bou-Zeid E, Fatichi S, Paschalis A, Sun T, Gasparrini A, Manoli Get al., 2023,

    Economic valuation of temperature-related mortality attributed to urban heat islands in European cities.

    , Nat Commun, Vol: 14

    As the climate warms, increasing heat-related health risks are expected, and can be exacerbated by the urban heat island (UHI) effect. UHIs can also offer protection against cold weather, but a clear quantification of their impacts on human health across diverse cities and seasons is still being explored. Here we provide a 500 m resolution assessment of mortality risks associated with UHIs for 85 European cities in 2015-2017. Acute impacts are found during heat extremes, with a 45% median increase in mortality risk associated with UHI, compared to a 7% decrease during cold extremes. However, protracted cold seasons result in greater integrated protective effects. On average, UHI-induced heat-/cold-related mortality is associated with economic impacts of €192/€ - 314 per adult urban inhabitant per year in Europe, comparable to air pollution and transit costs. These findings urge strategies aimed at designing healthier cities to consider the seasonality of UHI impacts, and to account for social costs, their controlling factors, and intra-urban variability.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1154&limit=10&resgrpMemberPubs=true&resgrpMemberPubs=true&page=11&respub-action=search.html Current Millis: 1714559140407 Current Time: Wed May 01 11:25:40 BST 2024