The MIM Lab develops robotic and mechatronics surgical systems for a variety of procedures.

Head of Group

Prof Ferdinando Rodriguez y Baena

B415C Bessemer Building
South Kensington Campus

+44 (0)20 7594 7046

⇒ X: @fmryb

 

What we do

The Mechatronics in Medicine Laboratory develops robotic and mechatronics surgical systems for a variety of procedures including neuro, cardiovascular, orthopaedic surgeries, and colonoscopies. Examples include bio-inspired catheters that can navigate along complex paths within the brain (such as EDEN2020), soft robots to explore endoluminal anatomies (such as the colon), and virtual reality solutions to support surgeons during knee replacement surgeries.

Why is it important

The integration of mechatronics into medicine addresses critical challenges in modern healthcare by enhancing the precision, safety, and efficiency of surgical procedures. Traditional surgeries often involve significant risks and extended recovery times. By developing robotic systems that offer greater accuracy and control, we aim to minimise these risks and reduce invasiveness. Our research contributes to the advancement of minimally invasive techniques, which are essential for improving patient outcomes and optimising healthcare resources. Furthermore, our work supports the training of the next generation of surgeons, equipping them with cutting-edge tools and methodologies that reflect the evolving landscape of medical technology.

How can it benefit patients

Patients stand to gain significantly from the innovations developed at the Mechatronics in Medicine Laboratory. Our robotic systems are designed to perform surgeries with enhanced precision, leading to fewer complications and faster recovery times. Minimally invasive procedures facilitated by our technologies result in less postoperative pain and reduced scarring, improving the overall patient experience. Additionally, the increased accuracy of our systems can lead to better surgical outcomes, such as more complete tumour removals or more precise joint replacements, thereby improving long-term health prospects. By pushing the boundaries of medical robotics, we strive to make advanced surgical care more accessible and effective for patients worldwide.

Meet the team

Citation

BibTex format

@inproceedings{Virdyawan:2019:10.1109/IROS.2018.8594198,
author = {Virdyawan, V and Rodriguez, y Baena F},
doi = {10.1109/IROS.2018.8594198},
publisher = {IEEE},
title = {Vessel pose estimation for obstacle avoidance in needle steering surgery using multiple forward looking sensors},
url = {http://dx.doi.org/10.1109/IROS.2018.8594198},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - During percutaneous interventions in the brain, puncturing a vessel can cause life-threatening complications. To avoid such a risk, current research has been directed towards the development of steerable needles. However, there is a risk that vessels of a size which is close to or smaller than the resolution of commonly used preoperative imaging modalities (0.59 x 0.59 x 1 mm) would not be detected during procedure planning, with a consequent increase in risk to the patient. In this work, we present a novel ensemble of forward-looking sensors based on laser Doppler flowmetry, which are embedded within a biologically inspired steerable needle to enable vessel detection during the insertion process. Four Doppler signals are used to classify the pose of a vessel in front of the advancing needle with a high degree of accuracy (2$^{\circ}$ and 0.1 mm RMS errors), where relative measurements between sensors are used to correct for ambiguity. By using a robotic-assisted needle insertion process, and thus a precisely controlled insertion speed, we also demonstrate how the setup can be used to discriminate between tissue bulk motion and vessel motion. In doing so, we describe a sensing apparatus applicable to a variety of needle steering systems, with the potential to eliminate the risk of haemorrhage during percutaneous procedures.
AU - Virdyawan,V
AU - Rodriguez,y Baena F
DO - 10.1109/IROS.2018.8594198
PB - IEEE
PY - 2019///
TI - Vessel pose estimation for obstacle avoidance in needle steering surgery using multiple forward looking sensors
UR - http://dx.doi.org/10.1109/IROS.2018.8594198
UR - https://ieeexplore.ieee.org/document/8594198
ER -

Contact Us

General enquiries

Facility enquiries


The Hamlyn Centre
Bessemer Building
South Kensington Campus
Imperial College
London, SW7 2AZ
Map location