Publications
Results
- Showing results for:
- Reset all filters
Search results
-
Journal articleSuh E, Grossman M, Waite J, et al., 2020,
The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria
, Nature Ecology and Evolution, ISSN: 2397-334XInsecticide-treated bed nets reduce malaria transmission by limiting contact between mosquito vectors and human hosts when mosquitoes feed during the night. However, malaria vectors can also feed in the early evening and in the morning when people are not protected. Here, we explored how timing of blood feeding interacts with environmental temperature to influence the capacity of Anopheles mosquitoes to transmit the human malaria parasite, Plasmodium falciparum . We found no effect of biting time itself on the proportion of mosquitoes that became infectious (vector competence) at constant temperature. However, when mosquitoes were maintained under more realistic fluctuating temperatures there was a significant increase in competence for mosquitoes feeding in the evening, and a significant reduction in competence for those feeding in the morning, relative to those feeding at midnight. These effects appear to be due to thermal sensitivity of malaria parasites during the initial stages of parasite development within the mosquito, and the fact that mosquitoes feeding in the evening experience cooling temperatures during the night, whereas mosquitoes feeding in the morning quickly experience warming temperatures that are inhibitory to parasite establishment. A transmission dynamics model illustrates that such differences in competence could have important implications for disease endemicity, the extent of transmission that persists in the presence of bed nets, and the epidemiological impact of behavioural resistance. These results indicate the interaction of temperature and feeding behaviour to be a major ecological determinant of the vectorial capacity of malaria mosquitoes.
-
ReportSherrard-Smith E, Hogan A, Hamlet A, et al., 2020,
Report 18: The potential public health impact of COVID-19 on malaria in Africa.
The COVID-19 pandemic is likely to severely interrupt health systems in Sub-Saharan Africa (SSA) over the coming weeks and months. Approximately 90% of malaria deaths occur in this region of the world, with an estimated 380,000 deaths from malaria in 2018. Much of the gain made in malaria control over the last decade has been due to the distribution of long-lasting insecticide treated nets (LLINs). Many SSA countries planned to distribute these in 2020. We used COVID-19 and malaria transmission models to understand the likely impact that disruption to these distributions, alongside other core health services, could have on the malaria burden. Results indicate that if all malaria-control activities are highly disrupted then the malaria burden in 2020 could more than double that in the previous year, resulting in large malaria epidemics across the region. These will depend on the course of the COVID-19 epidemic and how it interrupts local health system. Our results also demonstrate that it is essential to prioritise the LLIN distributions either before or as soon as possible into local COVID-19 epidemics to mitigate this risk. Additional planning to ensure other malaria prevention activities are continued where possible, alongside planning to ensure basic access to antimalarial treatment, will further minimise the risk of substantial additional malaria mortality.
-
Journal articleVerity R, Aydemir O, Brazeau NF, et al., 2020,
The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRC.
, Nature Communications, Vol: 11, Pages: 1-10, ISSN: 2041-1723The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is known about the spatial and genetic structure of the parasite population in that country. We sequence 2537 Plasmodium falciparum infections, including a nationally representative population sample from DRC and samples from surrounding countries, using molecular inversion probes - a high-throughput genotyping tool. We identify an east-west divide in haplotypes known to confer resistance to chloroquine and sulfadoxine-pyrimethamine. Furthermore, we identify highly related parasites over large geographic distances, indicative of gene flow and migration. Our results are consistent with a background of isolation by distance combined with the effects of selection for antimalarial drug resistance. This study provides a high-resolution view of parasite genetic structure across a large country in Africa and provides a baseline to study how implementation programs may impact parasite populations.
-
Journal articleOkell L, Bretscher MT, Dahal P, et al., 2020,
The duration of chemoprophylaxis against malaria after treatment with artesunate-amodiaquine and artemether-lumefantrine and the effects of pfmdr1 86Y and pfcrt 76T: a meta-analysis of individual patient data
, BMC Medicine, Vol: 18, Pages: 1-17, ISSN: 1741-7015Background: The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being also widely used as part of seasonal malaria chemoprevention programmes combined with sulfadoxine-pyrimethamine. Whilst artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas. Methods: We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n=4214 individuals). The time to PCR-confirmed re-infection after treatment was used to estimate the duration of post-treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov models. Accelerated failure-time models were used to identify potential effects of covariates on the time to re-infection. The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to determine the potential public health impact of each drug when used for first-line treatment. Results: We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7-15.7) for AL and 15.2 days (95% CI 12.8-18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7-18.6 days for AL and 10.2-18.7 days for AS-AQ. Significant predictors of time to re-infection in multivariate models were transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~2-fold longer protection than AL. Conversely at a higher prevalence of 86Y and 76T mutant parasites (>80%), AL provided up to 1.5-fold longer protection than AS-AQ. Our simulations found that these differences in the duration of protec
-
Journal articleWitmer K, Dahalan FA, Delves MJ, et al., 2020,
Artemisinin-resistant malaria parasites show enhanced transmission to mosquitoes under drug pressure
<jats:title>ABSTRACT</jats:title><jats:p>Resistance to artemisinin combination therapy (ACT) in the <jats:italic>Plasmodium falciparum</jats:italic> parasite is threatening to reverse recent gains in reducing global deaths from malaria. Whilst resistance manifests as delayed asexual parasite clearance in patients following ACT treatment, the phenotype can only spread geographically via the sexual cycle and subsequent transmission through the mosquito. Artemisinin and its derivatives (such as dihydroartemisinin, DHA) as well as killing the asexual parasite form are known to sterilize male, sexual-stage gametes from activation. Whether resistant parasites overcome this artemisinin-dependent sterilizing effect has not, however, been fully tested. Here, we analysed five <jats:italic>P. falciparum</jats:italic> clinical isolates from the Greater Mekong Subregion, each of which demonstrated delayed clinical clearance and carried known resistance-associated polymorphisms in the <jats:italic>Kelch13</jats:italic> gene (PfK13<jats:sup>var</jats:sup>). As well as demonstrating reduced sensitivity to artemisinin-derivates in <jats:italic>in vitro</jats:italic> asexual growth assays, certain PfK13<jats:sup>var</jats:sup> isolates also demonstrated a marked reduction in sensitivity to these drugs in an <jats:italic>in vitro</jats:italic> male gamete activation assay compared to a sensitive control. Importantly, the same reduction in sensitivity to DHA was observed when the most resistant isolate was assayed by standard membrane feeding assays using <jats:italic>Anopheles stephensi</jats:italic> mosquitoes. These results indicate that ACT use can favour resistant over sensitive parasite transmission. A selective advantage for resistant parasite transmission could also favour acquisition of further polymorphisms, such as mosquito host-specificity or antimalarial partne
-
Conference paperUnwin HJT, Sherrard-Smith E, Churcher TS, et al., 2020,
MODELLING THE IMPACT OF PYRETHROID RESISTANCE ON PERSONAL PROTECTION AND THE MASS COMMUNITY EFFECT OF LONG-LASTING INSECTICIDE TREATED NETS
, 68th Annual Meeting of the American-Society-for-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 187-187, ISSN: 0002-9637 -
Journal articleMurray GPD, Lissenden N, Jones J, et al., 2020,
Barrier bednets target malaria vectors and expand the range of usable insecticides
, Nature Microbiology, Vol: 5, Pages: 40-47, ISSN: 2058-5276Transmission of Plasmodium falciparum malaria parasites occurs when nocturnal Anopheles mosquito vectors feed on human blood. In Africa, where malaria burden is highest, bednets treated with pyrethroid insecticide were highly effective in preventing mosquito bites and reducing transmission, and essential to achieving unprecedented reductions in malaria until 2015 (ref. 1). Since then, progress has stalled2, and with insecticidal bednets losing efficacy against pyrethroid-resistant Anopheles vectors3,4, methods that restore performance are urgently needed to eliminate any risk of malaria returning to the levels seen before their widespread use throughout sub-Saharan Africa5. Here, we show that the primary malaria vector Anopheles gambiae is targeted and killed by small insecticidal net barriers positioned above a standard bednet in a spatial region of high mosquito activity but zero contact with sleepers, opening the way for deploying many more insecticides on bednets than is currently possible. Tested against wild pyrethroid-resistant A. gambiae in Burkina Faso, pyrethroid bednets with organophosphate barriers achieved significantly higher killing rates than bednets alone. Treated barriers on untreated bednets were equally effective, without significant loss of personal protection. Mathematical modelling of transmission dynamics predicted reductions in clinical malaria incidence with barrier bednets that matched those of ‘next-generation’ nets recommended by the World Health Organization against resistant vectors. Mathematical models of mosquito–barrier interactions identified alternative barrier designs to increase performance. Barrier bednets that overcome insecticide resistance are feasible using existing insecticides and production technology, and early implementation of affordable vector control tools is a realistic prospect.
-
Journal articlevan Lenthe M, van der Meulen R, Lassovski M, et al., 2019,
Markers of sulfadoxine-pyrimethamine resistance in Eastern Democratic Republic of Congo; implications for malaria chemoprevention
, Malaria Journal, Vol: 18, Pages: 1-9, ISSN: 1475-2875BackgroundSulfadoxine–pyrimethamine (SP) is a cornerstone of malaria chemoprophylaxis and is considered for programmes in the Democratic Republic of Congo (DRC). However, SP efficacy is threatened by drug resistance, that is conferred by mutations in the dhfr and dhps genes. The World Health Organization has specified that intermittent preventive treatment for infants (IPTi) with SP should be implemented only if the prevalence of the dhps K540E mutation is under 50%. There are limited current data on the prevalence of resistance-conferring mutations available from Eastern DRC. The current study aimed to address this knowledge gap.MethodsDried blood-spot samples were collected from clinically suspected malaria patients [outpatient department (OPD)] and pregnant women attending antenatal care (ANC) in four sites in North and South Kivu, DRC. Quantitative PCR (qPCR) was performed on samples from individuals with positive and with negative rapid diagnostic test (RDT) results. Dhps K450E and A581G and dhfr I164L were assessed by nested PCR followed by allele-specific primer extension and detection by multiplex bead-based assays.ResultsAcross populations, Plasmodium falciparum parasite prevalence was 47.9% (1160/2421) by RDT and 71.7 (1763/2421) by qPCR. Median parasite density measured by qPCR in RDT-negative qPCR-positive samples was very low with a median of 2.3 parasites/µL (IQR 0.5–25.2). Resistance genotyping was successfully performed in RDT-positive samples and RDT-negative/qPCR-positive samples with success rates of 86.2% (937/1086) and 55.5% (361/651), respectively. The presence of dhps K540E was high across sites (50.3–87.9%), with strong evidence for differences between sites (p < 0.001). Dhps A581G mutants were less prevalent (12.7–47.2%). The dhfr I164L mutation was found in one sample.ConclusionsThe prevalence of the SP resistance marker dhps K540E exceeds 50% in all four study sites in North and South Kivu, DR
-
Journal articleChallenger J, Goncalves BP, Bradley J, et al., 2019,
How delayed and non-adherent treatment contribute to onward transmission of malaria: a modelling study
, BMJ Global Health, Vol: 4, ISSN: 2059-7908IntroductionArtemether-lumefantrine (AL) is the most widely-recommended treatment for uncomplicatedPlasmodium falciparum malaria. Its efficacy has been extensively assessed in clinical trials. In routinehealthcare settings, however, its effectiveness can be diminished by delayed access to treatmentand poor adherence. As well as affecting clinical outcomes, these factors can lead to increasedtransmission, which is the focus of this study.MethodsWe extend a within-host model of Plasmodium falciparum to include gametocytes, the parasiteforms responsible for onward transmission. The model includes a pharmacokineticpharmacodynamic model of AL, calibrated against both immature and mature gametocytes usingindividual-level patient data, to estimate the impact that delayed access and imperfect adherence totreatment can have on onward transmission of the parasite to mosquitoes.ResultsUsing survey data from 7 African countries to determine the time taken to acquire antimalarialsfollowing fever increased our estimates of mean total infectivity of a malaria episode by up to 1.5-fold, compared to patients treated after 24 hours. Realistic adherence behaviour, based on datafrom a monitored cohort in Tanzania, increased the contribution to transmission by 2.2 to 2.4-fold,compared to a perfectly-adherent cohort. This was driven largely by increased rates of treatmentfailure leading to chronic infection, rather than prolonged gametocytaemia in patients who haveslower, but still successful, clearance of parasites after imperfect adherence to treatment. Ourmodel estimated that the mean infectivity of untreated infections was 29-51 times higher than thatof treated infections (assuming perfect drug adherence), underlining the importance of improvingtreatment coverage.ConclusionUsing mathematical modelling, we quantify how delayed treatment and non-adherent treatmentcan increase transmission compared to prompt effective treatment. We also highlight thattransmission from the large proporti
-
Journal articleSherrard-Smith E, Skarp JE, Beale AD, et al., 2019,
Mosquito feeding behavior and how it influences residual malaria transmission across Africa
, Proceedings of the National Academy of Sciences, Vol: 116, Pages: 15086-15095, ISSN: 0027-8424The antimalarial efficacy of the most important vector control interventions—long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)—primarily protect against mosquitoes’ biting people when they are in bed and indoors. Mosquito bites taken outside of these times contribute to residual transmission which determines the maximum effectiveness of current malaria prevention. The likelihood mosquitoes feed outside the time of day when LLINs and IRS can protect people is poorly understood, and the proportion of bites received outdoors may be higher after prolonged vector control. A systematic review of mosquito and human behavior is used to quantify and estimate the public health impact of outdoor biting across Africa. On average 79% of bites by the major malaria vectors occur during the time when people are in bed. This estimate is substantially lower than previous predictions, with results suggesting a nearly 10% lower proportion of bites taken at the time when people are beneath LLINs since the year 2000. Across Africa, this higher outdoor transmission is predicted to result in an estimated 10.6 million additional malaria cases annually if universal LLIN and IRS coverage was achieved. Higher outdoor biting diminishes the cases of malaria averted by vector control. This reduction in LLIN effectiveness appears to be exacerbated in areas where mosquito populations are resistant to insecticides used in bed nets, but no association was found between physiological resistance and outdoor biting. Substantial spatial heterogeneity in mosquito biting behavior between communities could contribute to differences in effectiveness of malaria control across Africa.
-
Journal articleSlater HC, Ross A, Felger I, et al., 2019,
Author Correction: The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density
, Nature Communications, Vol: 10, ISSN: 2041-1723Correction to: Nature Communications https://doi.org/10.1038/s41467-019-09441-1; published online 29 March 2019
-
Journal articleGreen N, Sherrard-Smith E, Tanton C, et al., 2019,
Assessing local chlamydia screening performance by combining survey and administrative data to account for differences in local population characteristics
, Scientific Reports, Vol: 9, ISSN: 2045-2322Reducing health inequalities requires improved understanding of the causes of variation. Local-level variation reflects differences in local population characteristics and health system performance. Identifying low- and high-performing localities allows investigation into these differences. We used Multilevel Regression with Post-stratification (MRP) to synthesise data from multiple sources, using chlamydia testing as our example. We used national probability survey data to identify individual-level characteristics associated with chlamydia testing and combined this with local-level census data to calculate expected levels of testing in each local authority (LA) in England, allowing us to identify LAs where observed chlamydia testing rates were lower or higher than expected, given population characteristics. Taking account of multiple covariates, including age, sex, ethnicity, student and cohabiting status, 5.4% and 3.5% of LAs had testing rates higher than expected for 95% and 99% posterior credible intervals, respectively; 60.9% and 50.8% had rates lower than expected. Residual differences between observed and MRP expected values were smallest for LAs with large proportions of non-white ethnic populations. London boroughs that were markedly different from expected MRP values (90% posterior exceedance probability) had actively targeted risk groups. This type of synthesis allows more refined inferences to be made at small-area levels than previously feasible.
-
Journal articlevan Eijk AM, Larsen DA, Kayentao K, et al., 2019,
Effect of Plasmodium falciparum sulfadoxine-pyrimethamine resistance on the effectiveness of intermittent preventive therapy for malaria in pregnancy in Africa: a systematic review and meta-analysis.
, Lancet Infectious Diseases, Vol: 19, Pages: 546-556, ISSN: 1473-3099BACKGROUND: Resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine threatens the antimalarial effectiveness of intermittent preventive treatment during pregnancy (IPTp) in sub-Saharan Africa. We aimed to assess the associations between markers of sulfadoxine-pyrimethamine resistance in P falciparum and the effectiveness of sulfadoxine-pyrimethamine IPTp for malaria-associated outcomes. METHODS: For this systematic review and meta-analysis, we searched databases (from Jan 1, 1990 to March 1, 2018) for clinical studies (aggregated data) or surveys (individual participant data) that reported data on low birthweight (primary outcome) and malaria by sulfadoxine-pyrimethamine IPTp dose, and for studies that reported on molecular markers of sulfadoxine-pyrimethamine resistance. Studies that involved only HIV-infected women or combined interventions were excluded. We did a random-effects meta-analysis (clinical studies) or multivariate log-binomial regression (surveys) to obtain summarised dose-response data (relative risk reduction [RRR]) and multivariate meta-regression to explore the modifying effects of sulfadoxine-pyrimethamine resistance (as indicated by Ala437Gly, Lys540Glu, and Ala581Gly substitutions in the dhps gene). This study is registered with PROSPERO, number 42016035540. FINDINGS: Of 1097 records screened, 57 studies were included in the aggregated-data meta-analysis (including 59 457 births). The RRR for low birthweight declined with increasing prevalence of dhps Lys540Glu (ptrend=0·0060) but not Ala437Gly (ptrend=0·35). The RRR was 7% (95% CI 0 to 13) in areas of high resistance to sulfadoxine-pyrimethamine (Lys540Glu ≥90% in east and southern Africa; n=11), 21% (14 to 29) in moderate-resistance areas (Ala437Gly ≥90% [central and west Africa], or Lys540Glu ≥30% to <90% [east and southern Africa]; n=16), and 27% (21 to 33) in low-resistance areas (Ala437Gly <90% [central and west Africa], or Lys540Glu <30% [east and
-
Journal articleSlater H, Ross A, Felger I, et al., 2019,
The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density
, Nature Communications, Vol: 10, ISSN: 2041-1723Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings.
-
Journal articleSherrard-Smith E, Griffin J, Winskill P, et al., 2018,
Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa
, Nature Communications, Vol: 9, ISSN: 2041-1723Indoor residual spraying (IRS) is an important part of malaria control. There is a growing list of insecticide classes; pyrethroids remain the principal insecticide used in bednets but recently, novel non-pyrethroid IRS products, with contrasting impacts, have been introduced. There is an urgent need to better assess product efficacy to help decision makers choose effective and relevant tools for mosquito control. Here we use experimental hut trial data to characterise the entomological efficacy of widely-used, novel IRS insecticides. We quantify their impact against pyrethroid-resistant mosquitoes and use a Plasmodium falciparum transmission model to predict the public health impact of different IRS insecticides. We report that long-lasting IRS formulations substantially reduce malaria, though their benefit over cheaper, shorter-lived formulations depends on local factors including bednet use, seasonality, endemicity and pyrethroid resistance status of local mosquito populations. We provide a framework to help decision makers evaluate IRS product effectiveness.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.