Professor Roger W.H. Sargent is the founding director of the Centre for Process Systems Engineering at Imperial College from 1989 to his retirement in 1992. The Centre was renamed in honour of Professor Sargent to 'The Sargent Centre for Process Systems Engineering' in December 2020. Professor Sargent has played a unique role in shaping the future of systems engineering research. His contributions have been recognized by many awards, most recently by IChemE. In 2015, IChemE created the Sargent Medal for research in computer aided product and process engineering in honour of Professor Sargent. The medals are designed to recognise the work of members of the chemical engineering academic community, who have contributed significantly to the advancement of the profession and society.

“We are very pleased to announce the names behind our new medals and celebrate some of their iconic achievements and contributions stretching back nearly a hundred years...IChemE is looking forward to celebrating their historic achievements and perpetuating their names in the future by awarding their medals to the next generations of chemical engineers for decades to come.” Claudia Flavell-While, IChemE Director of Publications. 

In 1994, we inaugurated an annual lectureship as a tribute to Roger Sargent’s excellence and his legacy in the field of Process Systems Engineering. The Lectures are free and open to the public.

The 27th Professor Roger Sargent Lecture wil be held online on 25th May 2021 at 16:00. Information on the Lecture can be found below. 


27th Professor Roger W. H. Sargent Lecture , Professor Yannis Kevrekidis, Johns Hopkins University School of Medicine

No equations, no variables, no space, no time: Data and the modeling of complex systems 

Obtaining predictive dynamical equations from data lies at the heart of science and engineering modeling, and is the linchpin of our technology. In mathematical modeling one typically progresses from observations of the world (andsome serious thinking!) first to equations for a model, and then to the analysis of the model to make predictions.

Good mathematical models give good predictions (and inaccurate ones do not) - but the computational tools for analyzing them are the same: algorithms that are typically based on closed form equations.

While the skeleton of the process remains the same, today we witness the development of mathematical techniques that operate directly on observations -data-, and appear to circumvent the serious thinking that goes into selecting variables and parameters and deriving accurate equations. The process then may appear to the user a little like making predictions by "looking in a crystal ball". Yet the "serious thinking" is still there anduses the same -and some new- mathematics: it goes into building algorithms that jump directly from data to the analysis of the model (which is now not available in closed form) so as to make predictions. Our work here presents a couple of efforts that illustrate this ``new” path from data to predictions. It really is the same old path, but it is travelled by new means.


Yannis Kevrekidis studied Chemical Engineering at the National Technical University in Athens. He then followed the steps of many alumni of that department to the University of Minnesota, where he studied with Rutherford Aris and Lanny Schmidt (as well as Don Aronson and Dick McGehee in Math). He was a Director's Fellow at the Center for Nonlinear Studies in Los Alamos in 1985-86 (when Soviets still existed and research funds were plentiful). He then had the good fortune of joining the faculty at Princeton, where he taught Chemical Engineering and also Applied and Computational Mathematics for 31 years; four years ago he became Emeritus and started fresh at Johns Hopkins (where he somehow is also Professor of Urology). His work always had to do with nonlinear dynamics (from instabilities and bifurcation algorithms to spatiotemporal patterns to data science in the 90s, nonlinear identification, multiscale modeling, and back to data science/ML); and he had the additional good fortune to work with several truly talented experimentalists, like G. Ertl's group in Berlin. When young and promising, he was a Packard Fellow, a Presidential Young Investigator and the Ulam Scholar at Los Alamos National Laboratory. He holds the Colburn, CAST and Wilhelm Awards of the AIChE, the Crawford and the Reid Prizes of SIAM, he is a member of the NAE, the American Academy of Arts and Sciences, and the Academy of Athens. Over the years he has had the privilege of interacting with branches of the Sargent family tree - most notably two Sargent Medal winners:  his longtime friend and colleague Chris Floudas, whom he very much misses, and your own Costas Pantelides, with whom he hopes there are still papers to be written. He may have even taught Prof. Adjiman at some point (if so, he hopes he did a credible job of it).

Eventbrite registration