Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Pirzio-Biroli A, Crowley SL, Siriwardena GM, Plummer KE, Schroeder J, White RLet al., 2024,

    Not in the countryside please! Investigating UK residents’ perceptions of an introduced species, the ring-necked parakeet (Psittacula krameri)

    , NeoBiota, Vol: 93, Pages: 1-24, ISSN: 1314-2488

    Wildlife management can generate social conflict when stakeholder perceptions of the target species are not considered. Introduced Ring-necked Parakeets (RNP) are established in the UK and have been added to the ‘general licence’ of birds that can be killed to prevent serious economic damage. We aimed to better understand perceptions of RNPs on a nationwide scale to inform mitigation actions for potential future conflict over RNP management. We surveyed 3,947 UK residents to understand awareness of, knowledge of and attitudes towards the RNP across the UK.We found that most respondents (90.2%) were aware of the RNP. Almost half of respondents (45.9%) held negative opinions, particularly against the RNP in rural areas (64.7%), suggesting landscape contexts influence attitudes. Respondent preference for the RNP was low in local neighbourhoods (7.80%) although the species was considered aesthetically pleasing by most (83.0%). Many respondents knew the species’ name (54.9%), but underestimated current population numbers in the UK (82.6%) and few knew its full native range (10.0%). We identified respondents’ ecological interest, age, education, preference for, awareness of and knowledge of the RNP as significant factors associated with perceptions.Our findings suggest that the RNP presents a complex socio-environmental challenge, with respondent awareness, knowledge and attitudes each forming an important component of perceptions towards this species. We recommend that wildlife managers utilise our findings and cohesive approach to enhance future RNP perception research in the UK and abroad and towards the success of any proposed management initiatives under the UK general licence.

  • Journal article
    Mwima R, Hui T-YJ, Kayondo JK, Burt Aet al., 2024,

    The population genetics of partial diapause, with applications to the aestivating malaria mosquito <i>Anopheles coluzzii</i>

    , MOLECULAR ECOLOGY RESOURCES, Vol: 24, ISSN: 1755-098X
  • Journal article
    Zhou L, Liu F, Achterberg EP, Engel A, Campbell PGC, Fortin C, Huang L, Tan Yet al., 2024,

    Promoting effects of aluminum addition on chlorophyll biosynthesis and growth of two cultured iron‐limited marine diatoms

    , Limnology and Oceanography, Vol: 69, Pages: 1157-1171, ISSN: 0024-3590

    <jats:title>Abstract</jats:title><jats:p>Aluminum (Al) may play a role in the ocean's capacity for absorbing atmospheric CO<jats:sub>2</jats:sub> via influencing carbon fixation, export, and sequestration. Aluminum fertilization, especially in iron (Fe)‐limited high‐nutrient, low‐chlorophyll ocean regions, has been proposed as a potential CO<jats:sub>2</jats:sub> removal strategy to mitigate global warming. However, how Al addition would influence the solubility and bioavailability of Fe as well as the physiology of Fe‐limited phytoplankton has not yet been examined. Here, we show that Al addition (20 and 100 nM) had little influence on the Fe solubility in surface seawater and decreased the Fe bio‐uptake by 11–22% in Fe‐limited diatom <jats:italic>Thalassiosira weissflogii</jats:italic> in Fe‐buffered media. On the other hand, the Al addition significantly increased the rate of chlorophyll biosynthesis by 45–60% for Fe‐limited <jats:italic>T. weissflogii</jats:italic> and 81–102% for Fe‐limited <jats:italic>Thalassiosira pseudonana</jats:italic>, as well as their cell size, cellular chlorophyll content, photosynthetic quantum efficiency (<jats:italic>F</jats:italic><jats:sub>v</jats:sub>/<jats:italic>F</jats:italic><jats:sub>m</jats:sub>) and growth rate. Under Fe‐sufficient conditions, the Al addition still led to an increased growth rate, though the beneficial effects of Al addition on chlorophyll biosynthesis were no longer apparent. These results suggest that Al may facilitate chlorophyll biosynthesis and benefit the photosynthetic efficiency and growth of Fe‐limited diatoms. We speculate that Al addition may enhance intracellular Fe use efficiency for chlorophyll biosynthesis by facilitating the superoxide‐mediated intracellular reduction of Fe(III) to Fe(II). Our study provides new evidence and support for the

  • Journal article
    Sun Y, Dunning J, Taylor T, Schroeder J, Zollinger SAet al., 2024,

    Calls of Manx shearwater <i>Puffinus puffinus</i> contain individual signatures

    , JOURNAL OF AVIAN BIOLOGY, Vol: 2024, ISSN: 0908-8857
  • Journal article
    Lewis-Brown E, Jennings N, Mills M, Ewers Ret al., 2024,

    Comparison of carbon management and emissions of universities that did and did not adopt voluntary carbon offsets

    , Climate Policy, Vol: 24, Pages: 706-722, ISSN: 1469-3062

    The urgent need to reduce greenhouse gas emissions, remove carbon from the atmosphere and stabilize natural carbon sinks has led to the development of many carbon management measures, increasingly including voluntary carbon offsets (VCOs). We studied carbon management in universities, institutions with large carbon footprints and considerable influence in climate science and policy fora. However, concerns that VCOs may deter adopters (including universities) from adopting other carbon reduction measures and limit emissions reductions, for example, through moral hazard, have been raised but understudied. We compared the carbon management characteristics (priorities, policies, practices and emissions) of universities that did and did not adopt VCOs. We found adopters measured carbon emissions for longer, and had set targets to reach net zero earlier than had non-adopters. Adopters of VCOs also undertook more carbon management practices in both 2010 and 2020 than non-adopters. We also found that both adopters and non-adopters significantly increased their carbon management practices over the decade studied, but with no difference between groups. Gross CO2 emissions were reduced significantly over time by adopters of VCOs but not by non-adopters, whereas carbon intensity and percentage annual emissions reductions did not relate to adoption status. Consequently, our study showed no indication of mitigation deterrence due to adoption of VCOs at the universities studied. Rather, greater emissions reductions correlated with earlier net zero target dates, and a higher number of policies and carbon management practices. However, our study was constrained to universities that were affiliated with a national environmental network, so research beyond these organizations, and with individuals, would be useful. The survey was voluntary, exposing the study to potential self-selection bias so the findings may not be generalized beyond the study group. Finally, we found the carbon ac

  • Journal article
    Pereira HM, Martins IS, Rosa IMD, Kim H, Leadley P, Popp A, van Vuuren DP, Hurtt G, Quoss L, Arneth A, Baisero D, Bakkenes M, Chaplin-Kramer R, Chini L, Di Marco M, Ferrier S, Fujimori S, Guerra CA, Harfoot M, Harwood TD, Hasegawa T, Haverd V, Havlík P, Hellweg S, Hilbers JP, Hill SLL, Hirata A, Hoskins AJ, Humpenöder F, Janse JH, Jetz W, Johnson JA, Krause A, Leclère D, Matsui T, Meijer JR, Merow C, Obersteiner M, Ohashi H, De Palma A, Poulter B, Purvis A, Quesada B, Rondinini C, Schipper AM, Settele J, Sharp R, Stehfest E, Strassburg BBN, Takahashi K, Talluto MV, Thuiller W, Titeux N, Visconti P, Ware C, Wolf F, Alkemade Ret al., 2024,

    Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050.

    , Science, Vol: 384, Pages: 458-465

    Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.

  • Journal article
    Blackford K, Kasoar M, Burton C, Burke E, Prentice IC, Voulgarakis Aet al., 2024,

    INFERNO-peat v1.0.0: a representation of northern high latitude peat fires in the JULES-INFERNO global fire model

    , Geoscientific Model Development, Vol: 17, Pages: 3063-3079, ISSN: 1991-959X

    Peat fires in the northern high latitudes have the potential to burn vast amounts of carbon-rich organic soil, releasing large quantities of long-term stored carbon to the atmosphere. Due to anthropogenic activities and climate change, peat fires are increasing in frequency and intensity across the high latitudes. However, at present they are not explicitly included in most fire models. Here we detail the development of INFERNO-peat, the first parameterization of peat fires in the JULES-INFERNO (Joint UK Land Environment Simulator INteractive Fire and Emission algoRithm for Natural envirOnments) fire model. INFERNO-peat utilizes knowledge from lab and field-based studies on peat fire ignition and spread to be able to model peat burnt area, burn depth, and carbon emissions, based on data of the moisture content, inorganic content, bulk density, soil temperature, and water table depth of peat. INFERNO-peat improves the representation of burnt area in the high latitudes, with peat fires simulating on average an additional 0.305×106 km2 of burn area each year, emitting 224.10 Tg of carbon. Compared to Global Fire Emissions Database version 5 (GFED5), INFERNO-peat captures ∼ 20 % more burnt area, whereas INFERNO underestimated burning by 50 %. Additionally, INFERNO-peat substantially improves the representation of interannual variability in burnt area and subsequent carbon emissions across the high latitudes. The coefficient of variation in carbon emissions is increased from 0.071 in INFERNO to 0.127 in INFERNO-peat, an almost 80 % increase. Therefore, explicitly modelling peat fires shows a substantial improvement in the fire modelling capabilities of JULES-INFERNO, highlighting the importance of representing peatland systems in fire models.

  • Journal article
    Zhang-Zheng H, Adu-Bredu S, Duah-Gyamfi A, Moore S, Addo-Danso S, Amissah L, Valentini R, Djagbletey G, Anum-Adjei K, Quansah J, Sarpong B, Owusu-Afriyie K, Gvozdevaite A, Tang M, Ruiz-Jaen M, Ibrahim F, Girardin C, Rifai S, Dahlsjo C, Riutta T, Deng X, Sun Y, Prentice IC, Oliveras Menor I, Malhi Yet al., 2024,

    Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia

    , Nature Communications, Vol: 15, ISSN: 2041-1723

    Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests’ gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE). The West African aridity gradient consistently shows the highest NPP, CUE, GPP, and autotrophic respiration at a medium-aridity site, Bobiri. Notably, NPP and GPP of the site are the highest yet reported anywhere for intact forests. Widely used data products substantially underestimate productivity when compared to biometric measurements in Amazonia and Africa. Our analysis suggests that the high productivity of the African forests is linked to their large GPP allocation to canopy and semi-deciduous characteristics.

  • Journal article
    Flo V, Joshi J, Sabot M, Sandoval D, Prentice ICet al., 2024,

    Incorporating photosynthetic acclimation improves stomatal optimisation models

    , Plant, Cell and Environment, ISSN: 0140-7791

    Stomatal opening in plant leaves is regulated through a balance of carbon and water exchange under different environmental conditions. Accurate estimation of stomatal regulation is crucial for understanding how plants respond to changing environmental conditions, particularly under climate change. A new generation of optimality-based modelling schemes determines instantaneous stomatal responses from a balance of trade-offs between carbon gains and hydraulic costs, but most such schemes do not account for biochemical acclimation in response to drought. Here, we compare the performance of six instantaneous stomatal optimisation models with and without accounting for photosynthetic acclimation. Using experimental data from 37 plant species, we found that accounting for photosynthetic acclimation improves the prediction of carbon assimilation in a majority of the tested models. Photosynthetic acclimation contributed significantly to the reduction of photosynthesis under drought conditions in all tested models. Drought effects on photosynthesis could not accurately be explained by the hydraulic impairment functions embedded in the stomatal models alone, indicating that photosynthetic acclimation must be considered to improve estimates of carbon assimilation during drought.

  • Journal article
    Smith TP, Clegg T, Ransome E, Martin-Lilley T, Rosindell J, Woodward G, Pawar S, Bell Tet al., 2024,

    High-throughput characterization of bacterial responses to complex mixtures of chemical pollutants

    , Nature Microbiology, Vol: 9, Pages: 938-948, ISSN: 2058-5276

    Our understanding of how microbes respond to micropollutants, such as pesticides, is almost wholly based on single-species responses to individual chemicals. However, in natural environments, microbes experience multiple pollutants simultaneously. Here we perform a matrix of multi-stressor experiments by assaying the growth of model and non-model strains of bacteria in all 255 combinations of 8 chemical stressors (antibiotics, herbicides, fungicides and pesticides). We found that bacterial strains responded in different ways to stressor mixtures, which could not be predicted simply from their phylogenetic relatedness. Increasingly complex chemical mixtures were both more likely to negatively impact bacterial growth in monoculture and more likely to reveal net interactive effects. A mixed co-culture of strains proved more resilient to increasingly complex mixtures and revealed fewer interactions in the growth response. These results show predictability in microbial population responses to chemical stressors and could increase the utility of next-generation eco-toxicological assays.

  • Journal article
    Stiller J, Feng S, Chowdhury A-A, Rivas-Gonzalez I, Duchene DA, Fang Q, Deng Y, Kozlov A, Stamatakis A, Claramunt S, Nguyen JMT, Ho SYW, Faircloth BC, Haag J, Houde P, Cracraft J, Balaban M, Mai U, Chen G, Gao R, Zhou C, Xie Y, Huang Z, Cao Z, Yan Z, Ogilvie HA, Nakhleh L, Lindow B, Morel B, Fjeldsa J, Hosner PA, da Fonseca RR, Petersen B, Tobias JA, Szekely T, Kennedy JD, Reeve AH, Liker A, Stervander M, Antunes A, Tietze DT, Bertelsen MF, Lei F, Rahbek C, Graves GR, Schierup MH, Warnow T, Braun EL, Gilbert MTP, Jarvis ED, Mirarab S, Zhang Get al., 2024,

    Complexity of avian evolution revealed by family-level genomes

    , NATURE, ISSN: 0028-0836
  • Journal article
    Fung YY, Carbone C, Scott-Gatty K, Freeman R, Ewers RM, Turner Jet al., 2024,

    Habitat suitability as an indicator of urbanisation potential in four UK mammals

    , MAMMAL REVIEW, Vol: 54, Pages: 105-120, ISSN: 0305-1838
  • Journal article
    Perkins R, Barron L, Glauser G, Whitehead M, Woodward G, Goulson Det al., 2024,

    Down-the-drain pathways for fipronil and imidacloprid applied as spot-on parasiticides to dogs: Estimating aquatic pollution

    , Science of the Total Environment, Vol: 917, ISSN: 0048-9697

    Fipronil and imidacloprid have been widely detected in UK surface waters in recent years, often at concentrations that ecotoxicological studies have shown can harm aquatic life. Down-the-drain (DTD) passage of pet flea and tick treatments are being implicated as an important source, with many of the UK's 22 million cats and dogs receiving routine, year-round preventative doses containing these parasiticides. The UK Water Industry's 3rd Chemical Investigation Programme (UKWIR CIP3) has confirmed wastewater as a major entry pathway for these chemicals into surface waters, but the routes by which they enter the wastewater system remain unclear. We addressed this knowledge gap by conducting the first quantification of DTD emissions from 98 dogs treated with spot-on ectoparasiticides containing fipronil or imidacloprid, through bathing, bed washing and washing of owners' hands. Both chemicals were detected in 100 % of washoff samples, with bathing accounting for the largest emissions per event (up to 16.8 % of applied imidacloprid and 24.5 % of applied fipronil). Modelled to account for the frequency of emitting activities, owner handwashing was identified as the largest source of DTD emissions from the population overall, with handwash emissions occurring for at least 28 days following product application and an estimated 4.9 % of imidacloprid and 3.1 % of fipronil applied in dog spot-ons passing down-the-drain via this route. The normalised daily per capita emissions for all routes combined were 8.7 μg/person/day for imidacloprid and 2.1 μg/person/day for fipronil, equivalent to 20-40 % of the daily per capita load in wastewater, as estimated from UKWIR CIP3 data. Within the current international regulatory framework adhered to by the UK, the environmental exposure of veterinary medicines intended for use in small companion animals is assumed to be low, and DTD pathways are not considered. We recommend a systematic rev

  • Journal article
    Posse-Sarmiento V, Banks-Leite C, 2024,

    The effects of edge influence on the microhabitat, diversity and life-history traits of amphibians in western Ecuador

    , JOURNAL OF TROPICAL ECOLOGY, Vol: 40, ISSN: 0266-4674
  • Journal article
    Jackson MC, Friberg N, Moliner Cachazo L, Clark DR, Mutinova PT, O'Gorman EJ, Kordas RL, Gallo B, Pichler DE, Bespalaya Y, Aksenova OV, Milner A, Brooks SJ, Dunn N, Lee KWK, Olafsson JS, Gislason GM, Millan L, Bell T, Dumbrell AJ, Woodward Get al., 2024,

    Regional impacts of warming on biodiversity and biomass in high latitude stream ecosystems across the Northern Hemisphere

    , COMMUNICATIONS BIOLOGY, Vol: 7
  • Journal article
    Qian J, Hu T, Xiong H, Cao X, Liu F, Gosnell KJ, Xie M, Chen R, Tan Q-Get al., 2024,

    Turbid Waters and Clearer Standards: Refining Water Quality Criteria for Coastal Environments by Encompassing Metal Bioavailability from Suspended Particles

    , ENVIRONMENTAL SCIENCE & TECHNOLOGY, Vol: 58, Pages: 5244-5254, ISSN: 0013-936X
  • Journal article
    Rizos G, Lawson J, Mitchell S, Shah P, Wen X, Banks-Leite C, Ewers R, Schuller BWet al., 2024,

    Propagating variational model uncertainty for bioacoustic call label smoothing

    , Patterns, Vol: 5, ISSN: 2666-3899

    Along with propagating the input toward making a prediction, Bayesian neural networks also propagate uncertainty. This has the potential to guide the training process by rejecting predictions of low confidence, and recent variational Bayesian methods can do so without Monte Carlo sampling of weights. Here, we apply sample-free methods for wildlife call detection on recordings made via passive acoustic monitoring equipment in the animals' natural habitats. We further propose uncertainty-aware label smoothing, where the smoothing probability is dependent on sample-free predictive uncertainty, in order to downweigh data samples that should contribute less to the loss value. We introduce a bioacoustic dataset recorded in Malaysian Borneo, containing overlapping calls from 30 species. On that dataset, our proposed method achieves an absolute percentage improvement of around 1.5 points on area under the receiver operating characteristic (AU-ROC), 13 points in F1, and 19.5 points in expected calibration error (ECE) compared to the point-estimate network baseline averaged across all target classes.

  • Journal article
    Dunning J, Burke T, Schroeder J, 2024,

    Divorce is linked with extra-pair paternity in a monogamous passerine

    , JOURNAL OF AVIAN BIOLOGY, Vol: 2024, ISSN: 0908-8857
  • Journal article
    Pawar S, Huxley PJ, Smallwood TRC, Nesbit ML, Chan AHH, Shocket MS, Johnson LR, Kontopoulos D-G, Cator LJet al., 2024,

    Variation in temperature of peak trait performance constrains adaptation of arthropod populations to climatic warming

    , Nature Ecology and Evolution, Vol: 8, Pages: 500-510, ISSN: 2397-334X

    The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.

  • Journal article
    Chan AHH, Liu J, Burke T, Pearse WD, Schroeder Jet al., 2024,

    Comparison of manual, machine learning, and hybrid methods for video annotation to extract parental care data

    , JOURNAL OF AVIAN BIOLOGY, Vol: 2024, ISSN: 0908-8857
  • Journal article
    Gumbs R, Scott O, Bates R, Böhm M, Forest F, Gray CL, Hoffmann M, Kane D, Low C, Pearse WD, Pipins S, Tapley B, Turvey ST, Jetz W, Owen NR, Rosindell Jet al., 2024,

    Global conservation status of the jawed vertebrate Tree of Life

    , Nature Communications, Vol: 15, ISSN: 2041-1723

    Human-driven extinction threatens entire lineages across the Tree of Life. Here we assess the conservation status of jawed vertebrate evolutionary history, using three policy-relevant approaches. First, we calculate an index of threat to overall evolutionary history, showing that we expect to lose 86-150 billion years (11-19%) of jawed vertebrate evolutionary history over the next 50-500 years. Second, we rank jawed vertebrate species by their EDGE scores to identify the highest priorities for species-focused conservation of evolutionary history, finding that chondrichthyans, ray-finned fish and testudines rank highest of all jawed vertebrates. Third, we assess the conservation status of jawed vertebrate families. We found that species within monotypic families are more likely to be threatened and more likely to be in decline than other species. We provide a baseline for the status of families at risk of extinction to catalyse conservation action. This work continues a trend of highlighting neglected groups—such as testudines, crocodylians, amphibians and chondrichthyans—as conservation priorities from a phylogenetic perspective.

  • Report
    Moffett E, Gayford J, Woodward G, Pearse Wet al., 2024,

    Biodiversity and ecosystem function: a global analysis of trends

  • Journal article
    Neyret M, Le Provost G, Boesing AL, Schneider FD, Baulechner D, Bergmann J, de Vries FT, Fiore-Donno AM, Geisen S, Goldmann K, Merges A, Saifutdinov RA, Simons NK, Tobias JA, Zaitsev AS, Gossner MM, Jung K, Kandeler E, Krauss J, Penone C, Schloter M, Schulz S, Staab M, Wolters V, Apostolakis A, Birkhofer K, Boch S, Boeddinghaus RS, Bolliger R, Bonkowski M, Buscot F, Dumack K, Fischer M, Gan HY, Heinze J, Hoelzel N, John K, Klaus VH, Kleinebecker T, Marhan S, Mueller J, Renner SC, Rillig MC, Schenk NV, Schoening I, Schrumpf M, Seibold S, Socher SA, Solly EF, Teuscher M, van Kleunen M, Wubet T, Manning Pet al., 2024,

    A slow-fast trait continuum at the whole community level in relation to land-use intensification

    , NATURE COMMUNICATIONS, Vol: 15
  • Journal article
    Drury JP, Clavel J, Tobias JA, Rolland J, Sheard C, Morlon Het al., 2024,

    Limited ecological opportunity influences the tempo of morphological evolution in birds

    , Current Biology, Vol: 34, Pages: 661-669.E4, ISSN: 0960-9822

    According to classic models of lineage diversification and adaptive radiation, phenotypic evolution should accelerate in the context of ecological opportunity and slow down when niches become saturated.1,2 However, only weak support for these ideas has been found in nature, perhaps because most analyses make the biologically unrealistic assumption that clade members contribute equally to reducing ecological opportunity, even when they occur in different continents or specialize on different habitats and diets. To view this problem through a different lens, we adapted a new phylogenetic modeling approach that accounts for the fact that competition for ecological opportunity only occurs between species that coexist and share similar habitats and diets. Applying this method to trait data for nearly all extant species of landbirds,3 we find a widespread signature of decelerating trait evolution in lineages adapted to similar habitats or diets. The strength of this pattern was consistent across latitudes when comparing tropical and temperate assemblages. Our results provide little support for the idea that increased diversity and tighter packing of niches accentuates evolutionary slowdowns in the tropics and instead suggest that limited ecological opportunity can be an important factor determining the rate of morphological diversification at a global scale.

  • Journal article
    Liu Y, Olsson A, Larva T, Cantwell-Jones A, Gill RJ, Cederberg B, Webster MTet al., 2024,

    Genomic variation in montane bumblebees in Scandinavia: high levels of intraspecific diversity despite population vulnerability.

    , Molecular Ecology, Vol: 33, ISSN: 0962-1083

    Populations of many bumblebee species are declining, with distributions shifting northwards to track suitable climates. Climate change is considered a major contributing factor. Arctic species are particularly vulnerable as they cannot shift further north, making assessment of their population viability important. Analysis of levels of whole-genome variation is a powerful way to analyse population declines and fragmentation. Here, we use genome sequencing to analyse genetic variation in seven species of bumblebee from the Scandinavian mountains, including two classified as vulnerable. We sequenced 333 samples from across the ranges of these species in Sweden. Estimates of effective population size (NE ) vary from ~55,000 for species with restricted high alpine distributions to 220,000 for more widespread species. Population fragmentation is generally very low or undetectable over large distances in the mountains, suggesting an absence of barriers to gene flow. The relatively high NE and low population structure indicate that none of the species are at immediate risk of negative genetic effects caused by high levels of genetic drift. However, reconstruction of historical fluctuations in NE indicates that the arctic specialist species Bombus hyperboreus has experienced population declines since the last ice age and we detected one highly inbred diploid male of this species close to the southern limit of its range, potentially indicating elevated genetic load. Although the levels of genetic variation in montane bumblebee populations are currently relatively high, their ranges are predicted to shrink drastically due to the effects of climate change and monitoring is essential to detect future population declines.

  • Journal article
    Cruz-Silva E, Harrion SP, Prentice IC, Marinova Eet al., 2024,

    Holocene vegetation dynamics of the Eastern Mediterranean region: old controversies addressed by a new analysis

    , Journal of Biogeography, Vol: 51, Pages: 294-310, ISSN: 0305-0270

    Aim:We reconstruct vegetation changes since 12 ky in the Eastern Mediterranean to examine four features of the regional vegetation history that are controversial: the extent of non-analogue vegetation assemblages in the transition from the Late Glacial to the early Holocene, the synchroneity of postglacial forest expansion, the geographical extent of temperate deciduous forest during the mid-Holocene and the timing and trigger for the re-establishment of drought-tolerant vegetation during the late Holocene.Location:The Eastern Mediterranean–Black Sea Caspian Corridor.Taxon:Vascular plants.Methods:We reconstruct vegetation changes for 122 fossil pollen records using a method that accounts for within-biome variability in pollen taxon abundance to determine the biome with which a sample has greatest affinity. Per-biome affinity threshold values were used to identify samples that do not belong to any modern biome. We apply time series analysis and mapping to examine space and time changes.Results:Sites with non-analogue vegetation were most common between 11.5 and 9.5 ky and mostly in the Carpathians. The transition from open vegetation to forest occurred at 10.64 ± 0.65 ky across the whole region. Temperate deciduous forest was not more extensive at 6 ky; maximum expansion occurred between 5.5 and 5 ky. Expansion of forest occurred between c. 4 and 2.8 k, followed by an abrupt decrease and a subsequent recovery. This pattern is not consistent with a systematic decline of forest towards more drought-tolerant vegetation in the late Holocene but is consistent with centennial-scale speleothem patterns linked to variations in moisture availability.Main Conclusions:We show the occurrence of non-analogue vegetation types peaked during early Holocene, forest expansion was synchronous across the region and there was an expansion of moisture-demanding temperate trees around 5.5 to 5 ky. There is no signal of a continuous late Holocene aridificat

  • Journal article
    Granville NR, Barclay MVL, Boyle MJW, Chung AYC, Fayle TM, Hah HE, Hardwick JL, Kinneen L, Kitching RL, Maunsell SC, Miller JA, Sharp AC, Stork NE, Wai L, Yusah KM, Ewers RMet al., 2024,

    Resilience of tropical invertebrate community assembly processes to a gradient of land use intensity

    , OIKOS, Vol: 2024, ISSN: 0030-1299

    Understanding how community assembly processes drive biodiversity patterns is a central goal of community ecology. While it is generally accepted that ecological communities are assembled by both stochastic and deterministic processes, quantifying their relative importance remains challenging. Few studies have investigated how the relative importance of stochastic and deterministic community assembly processes vary among taxa and along gradients of habitat degradation. Using data on 1645 arthropod species across seven taxonomic groups in Malaysian Borneo, we quantified the importance of ecological stochasticity and of a suite of community assembly processes across a gradient of logging intensity. The relationship between logging and community assembly varied depending on the specific combination of taxa and stochasticity metric used, but, in general, the processes that govern invertebrate community assembly were remarkably robust to changes in land use intensity.

  • Journal article
    Hatfield JH, Banks-Leite C, Barlow J, Lees AC, Tobias JAet al., 2024,

    Constraints on avian seed dispersal reduce potential for resilience in degraded tropical forests

    , FUNCTIONAL ECOLOGY, Vol: 38, Pages: 315-326, ISSN: 0269-8463
  • Journal article
    Molnar Z, Aumeeruddy-Thomas Y, Babai D, Diaz S, Garnett ST, Hill R, Bates P, Brondizio ES, Carino J, Demeter L, Fernandez-Llamazares A, Gueze M, Mcelwee P, Ollerer K, Purvis A, Reyes-Garcia V, Samakov A, Singh RKet al., 2024,

    Towards richer knowledge partnerships between ecology and ethnoecology

    , TRENDS IN ECOLOGY & EVOLUTION, Vol: 39, Pages: 109-115, ISSN: 0169-5347
  • Journal article
    Keeping T, Harrison SP, Prentice IC, 2024,

    Modelling the daily probability of wildfire occurrence in the contiguous United States

    , Environmental Research Letters, Vol: 19, ISSN: 1748-9326

    The development of a high-quality wildfire occurrence model is an essential component in mapping present wildfire risk, and in projecting future wildfire dynamics with climate and land-use change. Here, we develop a new model for predicting the daily probability of wildfire occurrence at 0.1° (∼10 km) spatial resolution by adapting a generalised linear modelling (GLM) approach to include improvements to the variable selection procedure, identification of the range over which specific predictors are influential, and the minimisation of compression, applied in an ensemble of model runs. We develop and test the model using data from the contiguous United States. The ensemble performed well in predicting the mean geospatial patterns of fire occurrence, the interannual variability in the number of fires, and the regional variation in the seasonal cycle of wildfire. Model runs gave an area under the receiver operating characteristic curve (AUC) of 0.85–0.88, indicating good predictive power. The ensemble of runs provides insight into the key predictors for wildfire occurrence in the contiguous United States. The methodology, though developed for the United States, is globally implementable.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=562&limit=30&resgrpMemberPubs=true&resgrpMemberPubs=true&page=2&respub-action=search.html Current Millis: 1725164785785 Current Time: Sun Sep 01 05:26:25 BST 2024