Citation

BibTex format

@article{Ciezarek:2020:10.1186/s12864-020-07058-z,
author = {Ciezarek, A and Gardner, L and Savolainen, V and Block, B},
doi = {10.1186/s12864-020-07058-z},
journal = {BMC Genomics},
title = {Skeletal muscle and cardiac transcriptomics of a regionally endothermic fish, the Pacific bluefin tuna, Thunnus orientalis},
url = {http://dx.doi.org/10.1186/s12864-020-07058-z},
volume = {21},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - BackgroundThe Pacific bluefin tuna (Thunnus orientalis) is a regionally endothermic fish that maintains temperatures in their swimming musculature, eyes, brain and viscera above that of the ambient water. Within their skeletal muscle, a thermal gradient exists, with deep muscles, close to the backbone, operating at elevated temperatures compared to superficial muscles near the skin. Their heart, by contrast, operates at ambient temperature, which in bluefin tunas can range widely. Cardiac function in tunas reduces in cold waters, yet the heart must continue to supply blood for metabolically demanding endothermic tissues. Physiological studies indicate Pacific bluefin tuna have an elevated cardiac capacity and increased cold-tolerance compared to warm-water tuna species, primarily enabled by increased capacity for sarcoplasmic reticulum calcium cycling within the cardiac muscles.ResultsHere, we compare tissue-specific gene-expression profiles of different cardiac and skeletal muscle tissues in Pacific bluefin tuna. There was little difference in the overall expression of calcium-cycling and cardiac contraction pathways between atrium and ventricle. However, expression of a key sarcoplasmic reticulum calcium-cycling gene, SERCA2b, which plays a key role maintaining intracellular calcium stores, was higher in atrium than ventricle. Expression of genes involved in aerobic metabolism and cardiac contraction were higher in the ventricle than atrium. The two morphologically distinct tissues that derive the ventricle, spongy and compact myocardium, had near-identical levels of gene expression. More genes had higher expression in the cool, superficial muscle than in the warm, deep muscle in both the aerobic red muscle (slow-twitch) and anaerobic white muscle (fast-twitch), suggesting thermal compensation.ConclusionsWe find evidence of widespread transcriptomic differences between the Pacific tuna ventricle and atrium, with potentially higher rates of calcium cycling in the a
AU - Ciezarek,A
AU - Gardner,L
AU - Savolainen,V
AU - Block,B
DO - 10.1186/s12864-020-07058-z
PY - 2020///
SN - 1471-2164
TI - Skeletal muscle and cardiac transcriptomics of a regionally endothermic fish, the Pacific bluefin tuna, Thunnus orientalis
T2 - BMC Genomics
UR - http://dx.doi.org/10.1186/s12864-020-07058-z
VL - 21
ER -

Postgraduate research

Interested in studying a PhD at the Department of Life Sciences? Find out more about postgraduate research opportunties.