Citation

BibTex format

@article{Ferraro:2020:10.1109/TAC.2019.2950873,
author = {Ferraro, P and Shorten, R and King, C},
doi = {10.1109/TAC.2019.2950873},
journal = {IEEE Transactions on Automatic Control},
pages = {3772--3783},
title = {On the stability of unverified transactions in a DAG-based distributed ledger},
url = {http://dx.doi.org/10.1109/TAC.2019.2950873},
volume = {65},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Directed Acylic Graphs (DAGs) are emerging as an attractive alternative to traditional blockchain architectures for distributed ledger technology (DLT). In particular DAG ledgers with stochastic attachment mechanisms potentially offer many advantages over blockchain, including scalability and faster trans- action speeds. However, the random nature of the attachment mechanism coupled with the requirement of protection against double-spending transactions might result in an unstable system in which not all transactions get eventually validated. Such transactions are said to be orphaned, and will never be validated. Our principal contribution is to propose a simple modification to the attachment mechanism for the Tangle (the IOTA DAG architecture). This modification ensures that all transactions are validated in finite time, and preserves essential features of the popular Monte-Carlo selection algorithm. In order to demonstrate these results we derive a fluid approximation for the Tangle (in the limit of infinite arrival rate) and prove that this fluid model exhibits the desired behavior. We also present simulations which validate the results for finite arrival rates.
AU - Ferraro,P
AU - Shorten,R
AU - King,C
DO - 10.1109/TAC.2019.2950873
EP - 3783
PY - 2020///
SN - 0018-9286
SP - 3772
TI - On the stability of unverified transactions in a DAG-based distributed ledger
T2 - IEEE Transactions on Automatic Control
UR - http://dx.doi.org/10.1109/TAC.2019.2950873
UR - https://ieeexplore.ieee.org/document/8889421
VL - 65
ER -

Contact us

Dyson School of Design Engineering
Imperial College London
25 Exhibition Road
South Kensington
London
SW7 2DB

design.engineering@imperial.ac.uk
Tel: +44 (0) 20 7594 8888

Campus Map