Citation

BibTex format

@article{Panahi:2025:10.1016/j.egyai.2025.100647,
author = {Panahi, AA and Luder, D and Wu, B and Offer, G and Sauer, DU and Li, W},
doi = {10.1016/j.egyai.2025.100647},
journal = {ENERGY AND AI},
title = {Fast and generalisable parameter-embedded neural operators for lithium-ion battery simulation},
url = {http://dx.doi.org/10.1016/j.egyai.2025.100647},
volume = {22},
year = {2025}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AU - Panahi,AA
AU - Luder,D
AU - Wu,B
AU - Offer,G
AU - Sauer,DU
AU - Li,W
DO - 10.1016/j.egyai.2025.100647
PY - 2025///
SN - 2666-5468
TI - Fast and generalisable parameter-embedded neural operators for lithium-ion battery simulation
T2 - ENERGY AND AI
UR - http://dx.doi.org/10.1016/j.egyai.2025.100647
VL - 22
ER -

Contact us

Dyson School of Design Engineering
Imperial College London
25 Exhibition Road
South Kensington
London
SW7 2DB

design.engineering@imperial.ac.uk
Tel: +44 (0) 20 7594 8888

Campus Map