Multi coloured people clip art

Contact

Inês Cebola (Group Lead)
Email: i.dos-santos-cebola@imperial.ac.uk

ICTEM Building, 5th floor
Hammersmith Campus
Du Cane Road
London
W12 0NN

 

What we do

Most of the genetic factors that associate with common human diseases reside in noncoding sequences. We aim to understand how specific noncoding sequences can affect the regulation of metabolic functions and contribute to human metabolic disease. We apply both computational and experimental approaches to better elucidate molecular processes involved in the development of metabolic dysfunction, having a particular interest in non-alcoholic fatty liver disease and other pathologies affecting the liver. We also explore the intricate relationship between liver cell dysfunction and the development of type 2 diabetes and cardiovascular disease.

Why it is important

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease, affecting 25% of the world’s adult population. NAFLD associates with multiple clinical states, including obesity, insulin resistance, and type 2 diabetes, which affects over 400 million people worldwide. Despite the large incidence of NAFLD and T2D, there are still no personalised therapies targeting the molecular origins of these conditions. Therefore, there is a strong need to improve our understanding of the mechanisms by which different factors, including genetics, influence disease risk.

How it can benefit patients

Our research aims to pinpoint specific processes that are altered in individuals at high disease genetic risk, as well as in patients. Understanding of the molecular mechanisms by which genetic risk leads to changes in cell function will provide the basis for the future design of targeted therapies and preventive strategies.

Summary of current research

The purpose of our research is to better understand the molecular mechanisms of liver insulin resistance through the use of transcriptomic, genomic and epigenomic studies using liver cell line models and primary cultures. We are deploying liver “steatosis in the petri dish” models and CRISPR-Cas9 editing to address our research questions. Our current activities include:

  • Characterisation of the epigenomic landscape of human liver cells in steady-state and pathophysiological conditions deploying human hepatocyte 3D cultures coupled with transcriptomic and epigenomic profiling.
  • Development of CRISPR/Cas9 functional screens to identify noncoding sequences that directly impact liver cell metabolic outputs.
  • Experimental validation of specific liver disease GWAS hits.

Connections


Our researchers

Our researchers