Citation

BibTex format

@inproceedings{Walsh:2025:10.1164/ajrccm.2025.211.Abstracts.A7680,
author = {Walsh, SL and Kanavati, F and Montiero, M and Sherlock, SP and Ble, F and Ostridge, K and Belvisi, MG and Molyneaux, P and Maher, TM and Johnson, SR and Saini, G and Thillai, M},
doi = {10.1164/ajrccm.2025.211.Abstracts.A7680},
publisher = {AMER THORACIC SOC},
title = {Deep Learning-Based Quantitative CT and CT Phenotype Classification Independently Predict Mortality in Idiopathic Pulmonary Fibrosis, a Prospective Observational Cohort Study},
url = {http://dx.doi.org/10.1164/ajrccm.2025.211.Abstracts.A7680},
year = {2025}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AU - Walsh,SL
AU - Kanavati,F
AU - Montiero,M
AU - Sherlock,SP
AU - Ble,F
AU - Ostridge,K
AU - Belvisi,MG
AU - Molyneaux,P
AU - Maher,TM
AU - Johnson,SR
AU - Saini,G
AU - Thillai,M
DO - 10.1164/ajrccm.2025.211.Abstracts.A7680
PB - AMER THORACIC SOC
PY - 2025///
SN - 1073-449X
TI - Deep Learning-Based Quantitative CT and CT Phenotype Classification Independently Predict Mortality in Idiopathic Pulmonary Fibrosis, a Prospective Observational Cohort Study
UR - http://dx.doi.org/10.1164/ajrccm.2025.211.Abstracts.A7680
ER -